| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1maprhm.q |
|- O = ( R evalSub1 S ) |
| 2 |
|
evls1maprhm.p |
|- P = ( Poly1 ` ( R |`s S ) ) |
| 3 |
|
evls1maprhm.b |
|- B = ( Base ` R ) |
| 4 |
|
evls1maprhm.u |
|- U = ( Base ` P ) |
| 5 |
|
evls1maprhm.r |
|- ( ph -> R e. CRing ) |
| 6 |
|
evls1maprhm.s |
|- ( ph -> S e. ( SubRing ` R ) ) |
| 7 |
|
evls1maprhm.y |
|- ( ph -> X e. B ) |
| 8 |
|
evls1maprhm.f |
|- F = ( p e. U |-> ( ( O ` p ) ` X ) ) |
| 9 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
| 10 |
|
eqid |
|- ( algSc ` ( Poly1 ` R ) ) = ( algSc ` ( Poly1 ` R ) ) |
| 11 |
|
eqid |
|- ( R |`s S ) = ( R |`s S ) |
| 12 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
| 13 |
9 10 11 2 6 12
|
subrg1ascl |
|- ( ph -> ( algSc ` P ) = ( ( algSc ` ( Poly1 ` R ) ) |` S ) ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ y e. S ) -> ( algSc ` P ) = ( ( algSc ` ( Poly1 ` R ) ) |` S ) ) |
| 15 |
14
|
fveq1d |
|- ( ( ph /\ y e. S ) -> ( ( algSc ` P ) ` y ) = ( ( ( algSc ` ( Poly1 ` R ) ) |` S ) ` y ) ) |
| 16 |
|
simpr |
|- ( ( ph /\ y e. S ) -> y e. S ) |
| 17 |
16
|
fvresd |
|- ( ( ph /\ y e. S ) -> ( ( ( algSc ` ( Poly1 ` R ) ) |` S ) ` y ) = ( ( algSc ` ( Poly1 ` R ) ) ` y ) ) |
| 18 |
15 17
|
eqtrd |
|- ( ( ph /\ y e. S ) -> ( ( algSc ` P ) ` y ) = ( ( algSc ` ( Poly1 ` R ) ) ` y ) ) |
| 19 |
6
|
adantr |
|- ( ( ph /\ y e. S ) -> S e. ( SubRing ` R ) ) |
| 20 |
10 11 9 2 4 19 16
|
asclply1subcl |
|- ( ( ph /\ y e. S ) -> ( ( algSc ` ( Poly1 ` R ) ) ` y ) e. U ) |
| 21 |
18 20
|
eqeltrd |
|- ( ( ph /\ y e. S ) -> ( ( algSc ` P ) ` y ) e. U ) |
| 22 |
|
fveq2 |
|- ( p = ( ( algSc ` P ) ` y ) -> ( O ` p ) = ( O ` ( ( algSc ` P ) ` y ) ) ) |
| 23 |
22
|
fveq1d |
|- ( p = ( ( algSc ` P ) ` y ) -> ( ( O ` p ) ` X ) = ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) ) |
| 24 |
23
|
eqeq2d |
|- ( p = ( ( algSc ` P ) ` y ) -> ( y = ( ( O ` p ) ` X ) <-> y = ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) ) ) |
| 25 |
24
|
adantl |
|- ( ( ( ph /\ y e. S ) /\ p = ( ( algSc ` P ) ` y ) ) -> ( y = ( ( O ` p ) ` X ) <-> y = ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) ) ) |
| 26 |
5
|
adantr |
|- ( ( ph /\ y e. S ) -> R e. CRing ) |
| 27 |
1 2 11 3 12 26 19 16
|
evls1sca |
|- ( ( ph /\ y e. S ) -> ( O ` ( ( algSc ` P ) ` y ) ) = ( B X. { y } ) ) |
| 28 |
27
|
fveq1d |
|- ( ( ph /\ y e. S ) -> ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) = ( ( B X. { y } ) ` X ) ) |
| 29 |
7
|
adantr |
|- ( ( ph /\ y e. S ) -> X e. B ) |
| 30 |
|
vex |
|- y e. _V |
| 31 |
30
|
fvconst2 |
|- ( X e. B -> ( ( B X. { y } ) ` X ) = y ) |
| 32 |
29 31
|
syl |
|- ( ( ph /\ y e. S ) -> ( ( B X. { y } ) ` X ) = y ) |
| 33 |
28 32
|
eqtr2d |
|- ( ( ph /\ y e. S ) -> y = ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) ) |
| 34 |
21 25 33
|
rspcedvd |
|- ( ( ph /\ y e. S ) -> E. p e. U y = ( ( O ` p ) ` X ) ) |
| 35 |
8 34 16
|
elrnmptd |
|- ( ( ph /\ y e. S ) -> y e. ran F ) |
| 36 |
35
|
ex |
|- ( ph -> ( y e. S -> y e. ran F ) ) |
| 37 |
36
|
ssrdv |
|- ( ph -> S C_ ran F ) |