Step |
Hyp |
Ref |
Expression |
1 |
|
evls1maprhm.q |
|- O = ( R evalSub1 S ) |
2 |
|
evls1maprhm.p |
|- P = ( Poly1 ` ( R |`s S ) ) |
3 |
|
evls1maprhm.b |
|- B = ( Base ` R ) |
4 |
|
evls1maprhm.u |
|- U = ( Base ` P ) |
5 |
|
evls1maprhm.r |
|- ( ph -> R e. CRing ) |
6 |
|
evls1maprhm.s |
|- ( ph -> S e. ( SubRing ` R ) ) |
7 |
|
evls1maprhm.y |
|- ( ph -> X e. B ) |
8 |
|
evls1maprhm.f |
|- F = ( p e. U |-> ( ( O ` p ) ` X ) ) |
9 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
10 |
|
eqid |
|- ( algSc ` ( Poly1 ` R ) ) = ( algSc ` ( Poly1 ` R ) ) |
11 |
|
eqid |
|- ( R |`s S ) = ( R |`s S ) |
12 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
13 |
9 10 11 2 6 12
|
subrg1ascl |
|- ( ph -> ( algSc ` P ) = ( ( algSc ` ( Poly1 ` R ) ) |` S ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ y e. S ) -> ( algSc ` P ) = ( ( algSc ` ( Poly1 ` R ) ) |` S ) ) |
15 |
14
|
fveq1d |
|- ( ( ph /\ y e. S ) -> ( ( algSc ` P ) ` y ) = ( ( ( algSc ` ( Poly1 ` R ) ) |` S ) ` y ) ) |
16 |
|
simpr |
|- ( ( ph /\ y e. S ) -> y e. S ) |
17 |
16
|
fvresd |
|- ( ( ph /\ y e. S ) -> ( ( ( algSc ` ( Poly1 ` R ) ) |` S ) ` y ) = ( ( algSc ` ( Poly1 ` R ) ) ` y ) ) |
18 |
15 17
|
eqtrd |
|- ( ( ph /\ y e. S ) -> ( ( algSc ` P ) ` y ) = ( ( algSc ` ( Poly1 ` R ) ) ` y ) ) |
19 |
6
|
adantr |
|- ( ( ph /\ y e. S ) -> S e. ( SubRing ` R ) ) |
20 |
10 11 9 2 4 19 16
|
asclply1subcl |
|- ( ( ph /\ y e. S ) -> ( ( algSc ` ( Poly1 ` R ) ) ` y ) e. U ) |
21 |
18 20
|
eqeltrd |
|- ( ( ph /\ y e. S ) -> ( ( algSc ` P ) ` y ) e. U ) |
22 |
|
fveq2 |
|- ( p = ( ( algSc ` P ) ` y ) -> ( O ` p ) = ( O ` ( ( algSc ` P ) ` y ) ) ) |
23 |
22
|
fveq1d |
|- ( p = ( ( algSc ` P ) ` y ) -> ( ( O ` p ) ` X ) = ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) ) |
24 |
23
|
eqeq2d |
|- ( p = ( ( algSc ` P ) ` y ) -> ( y = ( ( O ` p ) ` X ) <-> y = ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) ) ) |
25 |
24
|
adantl |
|- ( ( ( ph /\ y e. S ) /\ p = ( ( algSc ` P ) ` y ) ) -> ( y = ( ( O ` p ) ` X ) <-> y = ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) ) ) |
26 |
5
|
adantr |
|- ( ( ph /\ y e. S ) -> R e. CRing ) |
27 |
1 2 11 3 12 26 19 16
|
evls1sca |
|- ( ( ph /\ y e. S ) -> ( O ` ( ( algSc ` P ) ` y ) ) = ( B X. { y } ) ) |
28 |
27
|
fveq1d |
|- ( ( ph /\ y e. S ) -> ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) = ( ( B X. { y } ) ` X ) ) |
29 |
7
|
adantr |
|- ( ( ph /\ y e. S ) -> X e. B ) |
30 |
|
vex |
|- y e. _V |
31 |
30
|
fvconst2 |
|- ( X e. B -> ( ( B X. { y } ) ` X ) = y ) |
32 |
29 31
|
syl |
|- ( ( ph /\ y e. S ) -> ( ( B X. { y } ) ` X ) = y ) |
33 |
28 32
|
eqtr2d |
|- ( ( ph /\ y e. S ) -> y = ( ( O ` ( ( algSc ` P ) ` y ) ) ` X ) ) |
34 |
21 25 33
|
rspcedvd |
|- ( ( ph /\ y e. S ) -> E. p e. U y = ( ( O ` p ) ` X ) ) |
35 |
8 34 16
|
elrnmptd |
|- ( ( ph /\ y e. S ) -> y e. ran F ) |
36 |
35
|
ex |
|- ( ph -> ( y e. S -> y e. ran F ) ) |
37 |
36
|
ssrdv |
|- ( ph -> S C_ ran F ) |