| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1maprhm.q |
⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) |
| 2 |
|
evls1maprhm.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) |
| 3 |
|
evls1maprhm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
evls1maprhm.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 5 |
|
evls1maprhm.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 6 |
|
evls1maprhm.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
|
evls1maprhm.y |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
evls1maprhm.f |
⊢ 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) |
| 9 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 10 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 12 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) |
| 14 |
13
|
subrgcrng |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑅 ↾s 𝑆 ) ∈ CRing ) |
| 15 |
5 6 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ CRing ) |
| 16 |
2
|
ply1crng |
⊢ ( ( 𝑅 ↾s 𝑆 ) ∈ CRing → 𝑃 ∈ CRing ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
| 18 |
17
|
crngringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 19 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 20 |
|
fveq2 |
⊢ ( 𝑝 = ( 1r ‘ 𝑃 ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ) |
| 21 |
20
|
fveq1d |
⊢ ( 𝑝 = ( 1r ‘ 𝑃 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝑋 ) ) |
| 22 |
4 9
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ 𝑈 ) |
| 23 |
18 22
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ 𝑈 ) |
| 24 |
|
fvexd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝑋 ) ∈ V ) |
| 25 |
8 21 23 24
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝑋 ) ) |
| 26 |
13 10
|
subrg1 |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 27 |
6 26
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) |
| 29 |
15
|
crngringd |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ Ring ) |
| 30 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 31 |
|
eqid |
⊢ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) = ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) |
| 32 |
2 30 31 9
|
ply1scl1 |
⊢ ( ( 𝑅 ↾s 𝑆 ) ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) = ( 1r ‘ 𝑃 ) ) |
| 33 |
29 32
|
syl |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) = ( 1r ‘ 𝑃 ) ) |
| 34 |
28 33
|
eqtr2d |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
| 35 |
34
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) = ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 36 |
35
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑋 ) ) |
| 37 |
10
|
subrg1cl |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
| 38 |
6 37
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
| 39 |
1 2 13 3 30 5 6 38 7
|
evls1scafv |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 40 |
25 36 39
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( 1r ‘ 𝑅 ) ) |
| 41 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑅 ∈ CRing ) |
| 42 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 43 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑞 ∈ 𝑈 ) |
| 44 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑟 ∈ 𝑈 ) |
| 45 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑋 ∈ 𝐵 ) |
| 46 |
1 3 2 13 4 11 12 41 42 43 44 45
|
evls1muld |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) = ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) ) |
| 47 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ) |
| 48 |
47
|
fveq1d |
⊢ ( 𝑝 = ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ) |
| 49 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑃 ∈ Ring ) |
| 50 |
4 11 49 43 44
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ∈ 𝑈 ) |
| 51 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ∈ V ) |
| 52 |
8 48 50 51
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ) |
| 53 |
|
fveq2 |
⊢ ( 𝑝 = 𝑞 → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ 𝑞 ) ) |
| 54 |
53
|
fveq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ) |
| 55 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ∈ V ) |
| 56 |
8 54 43 55
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ 𝑞 ) = ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ) |
| 57 |
|
fveq2 |
⊢ ( 𝑝 = 𝑟 → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ 𝑟 ) ) |
| 58 |
57
|
fveq1d |
⊢ ( 𝑝 = 𝑟 → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) |
| 59 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ∈ V ) |
| 60 |
8 58 44 59
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ 𝑟 ) = ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) |
| 61 |
56 60
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) = ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) ) |
| 62 |
46 52 61
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) ) |
| 63 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 64 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 65 |
|
eqid |
⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) |
| 66 |
1 3 2 13 4 65 5 6
|
ressply1evl |
⊢ ( 𝜑 → 𝑂 = ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑂 = ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ) |
| 68 |
67
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑂 ‘ 𝑝 ) = ( ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ‘ 𝑝 ) ) |
| 69 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑝 ∈ 𝑈 ) |
| 70 |
69
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ‘ 𝑝 ) = ( ( eval1 ‘ 𝑅 ) ‘ 𝑝 ) ) |
| 71 |
68 70
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑂 ‘ 𝑝 ) = ( ( eval1 ‘ 𝑅 ) ‘ 𝑝 ) ) |
| 72 |
71
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑝 ) ‘ 𝑋 ) ) |
| 73 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 74 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
| 75 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑅 ∈ CRing ) |
| 76 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑋 ∈ 𝐵 ) |
| 77 |
|
eqid |
⊢ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) = ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) |
| 78 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) = ( Base ‘ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 79 |
73 13 2 4 6 77 78 74
|
ressply1bas2 |
⊢ ( 𝜑 → 𝑈 = ( ( Base ‘ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ) |
| 80 |
|
inss2 |
⊢ ( ( Base ‘ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
| 81 |
79 80
|
eqsstrdi |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 82 |
81
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑝 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 83 |
65 73 3 74 75 76 82
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑝 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 84 |
72 83
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 85 |
84 8
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝑈 ⟶ 𝐵 ) |
| 86 |
1 3 2 13 4 63 64 41 42 43 44 45
|
evls1addd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) = ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) ) |
| 87 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ) |
| 88 |
87
|
fveq1d |
⊢ ( 𝑝 = ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ) |
| 89 |
49
|
ringgrpd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑃 ∈ Grp ) |
| 90 |
4 63 89 43 44
|
grpcld |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ∈ 𝑈 ) |
| 91 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ∈ V ) |
| 92 |
8 88 90 91
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ) |
| 93 |
56 60
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) = ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) ) |
| 94 |
86 92 93
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) ) |
| 95 |
4 9 10 11 12 18 19 40 62 3 63 64 85 94
|
isrhmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) ) |