Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annidl.o |
|- O = ( R evalSub1 S ) |
2 |
|
ply1annidl.p |
|- P = ( Poly1 ` ( R |`s S ) ) |
3 |
|
ply1annidl.b |
|- B = ( Base ` R ) |
4 |
|
ply1annidl.r |
|- ( ph -> R e. CRing ) |
5 |
|
ply1annidl.s |
|- ( ph -> S e. ( SubRing ` R ) ) |
6 |
|
ply1annidl.a |
|- ( ph -> A e. B ) |
7 |
|
ply1annidl.0 |
|- .0. = ( 0g ` R ) |
8 |
|
ply1annidl.q |
|- Q = { q e. dom O | ( ( O ` q ) ` A ) = .0. } |
9 |
|
ply1annnr.u |
|- U = ( Base ` P ) |
10 |
|
ply1annnr.1 |
|- ( ph -> R e. NzRing ) |
11 |
8
|
a1i |
|- ( ph -> Q = { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
12 |
4
|
crngringd |
|- ( ph -> R e. Ring ) |
13 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
14 |
13
|
subrg1cl |
|- ( S e. ( SubRing ` R ) -> ( 1r ` R ) e. S ) |
15 |
5 14
|
syl |
|- ( ph -> ( 1r ` R ) e. S ) |
16 |
3
|
subrgss |
|- ( S e. ( SubRing ` R ) -> S C_ B ) |
17 |
5 16
|
syl |
|- ( ph -> S C_ B ) |
18 |
|
eqid |
|- ( R |`s S ) = ( R |`s S ) |
19 |
18 3 13
|
ress1r |
|- ( ( R e. Ring /\ ( 1r ` R ) e. S /\ S C_ B ) -> ( 1r ` R ) = ( 1r ` ( R |`s S ) ) ) |
20 |
12 15 17 19
|
syl3anc |
|- ( ph -> ( 1r ` R ) = ( 1r ` ( R |`s S ) ) ) |
21 |
20
|
fveq2d |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( ( algSc ` P ) ` ( 1r ` ( R |`s S ) ) ) ) |
22 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
23 |
|
eqid |
|- ( 1r ` ( R |`s S ) ) = ( 1r ` ( R |`s S ) ) |
24 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
25 |
18
|
subrgring |
|- ( S e. ( SubRing ` R ) -> ( R |`s S ) e. Ring ) |
26 |
5 25
|
syl |
|- ( ph -> ( R |`s S ) e. Ring ) |
27 |
2 22 23 24 26
|
ply1ascl1 |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` ( R |`s S ) ) ) = ( 1r ` P ) ) |
28 |
21 27
|
eqtrd |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( 1r ` P ) ) |
29 |
2
|
ply1ring |
|- ( ( R |`s S ) e. Ring -> P e. Ring ) |
30 |
9 24
|
ringidcl |
|- ( P e. Ring -> ( 1r ` P ) e. U ) |
31 |
26 29 30
|
3syl |
|- ( ph -> ( 1r ` P ) e. U ) |
32 |
28 31
|
eqeltrd |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` R ) ) e. U ) |
33 |
1 2 18 3 22 4 5 15 6
|
evls1scafv |
|- ( ph -> ( ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ` A ) = ( 1r ` R ) ) |
34 |
13 7
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= .0. ) |
35 |
10 34
|
syl |
|- ( ph -> ( 1r ` R ) =/= .0. ) |
36 |
33 35
|
eqnetrd |
|- ( ph -> ( ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ` A ) =/= .0. ) |
37 |
36
|
neneqd |
|- ( ph -> -. ( ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ` A ) = .0. ) |
38 |
|
fveq2 |
|- ( q = ( ( algSc ` P ) ` ( 1r ` R ) ) -> ( O ` q ) = ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ) |
39 |
38
|
fveq1d |
|- ( q = ( ( algSc ` P ) ` ( 1r ` R ) ) -> ( ( O ` q ) ` A ) = ( ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ` A ) ) |
40 |
39
|
eqeq1d |
|- ( q = ( ( algSc ` P ) ` ( 1r ` R ) ) -> ( ( ( O ` q ) ` A ) = .0. <-> ( ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ` A ) = .0. ) ) |
41 |
40
|
elrab |
|- ( ( ( algSc ` P ) ` ( 1r ` R ) ) e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } <-> ( ( ( algSc ` P ) ` ( 1r ` R ) ) e. dom O /\ ( ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ` A ) = .0. ) ) |
42 |
41
|
simprbi |
|- ( ( ( algSc ` P ) ` ( 1r ` R ) ) e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } -> ( ( O ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) ` A ) = .0. ) |
43 |
37 42
|
nsyl |
|- ( ph -> -. ( ( algSc ` P ) ` ( 1r ` R ) ) e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
44 |
|
nelne1 |
|- ( ( ( ( algSc ` P ) ` ( 1r ` R ) ) e. U /\ -. ( ( algSc ` P ) ` ( 1r ` R ) ) e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) -> U =/= { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
45 |
32 43 44
|
syl2anc |
|- ( ph -> U =/= { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
46 |
45
|
necomd |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = .0. } =/= U ) |
47 |
11 46
|
eqnetrd |
|- ( ph -> Q =/= U ) |