| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1annidl.o |
|
| 2 |
|
ply1annidl.p |
|
| 3 |
|
ply1annidl.b |
|
| 4 |
|
ply1annidl.r |
|
| 5 |
|
ply1annidl.s |
|
| 6 |
|
ply1annidl.a |
|
| 7 |
|
ply1annidl.0 |
|
| 8 |
|
ply1annidl.q |
|
| 9 |
|
ply1annnr.u |
|
| 10 |
|
ply1annnr.1 |
|
| 11 |
8
|
a1i |
|
| 12 |
4
|
crngringd |
|
| 13 |
|
eqid |
|
| 14 |
13
|
subrg1cl |
|
| 15 |
5 14
|
syl |
|
| 16 |
3
|
subrgss |
|
| 17 |
5 16
|
syl |
|
| 18 |
|
eqid |
|
| 19 |
18 3 13
|
ress1r |
|
| 20 |
12 15 17 19
|
syl3anc |
|
| 21 |
20
|
fveq2d |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
18
|
subrgring |
|
| 26 |
5 25
|
syl |
|
| 27 |
2 22 23 24 26
|
ply1ascl1 |
|
| 28 |
21 27
|
eqtrd |
|
| 29 |
2
|
ply1ring |
|
| 30 |
9 24
|
ringidcl |
|
| 31 |
26 29 30
|
3syl |
|
| 32 |
28 31
|
eqeltrd |
|
| 33 |
1 2 18 3 22 4 5 15 6
|
evls1scafv |
|
| 34 |
13 7
|
nzrnz |
|
| 35 |
10 34
|
syl |
|
| 36 |
33 35
|
eqnetrd |
|
| 37 |
36
|
neneqd |
|
| 38 |
|
fveq2 |
|
| 39 |
38
|
fveq1d |
|
| 40 |
39
|
eqeq1d |
|
| 41 |
40
|
elrab |
|
| 42 |
41
|
simprbi |
|
| 43 |
37 42
|
nsyl |
|
| 44 |
|
nelne1 |
|
| 45 |
32 43 44
|
syl2anc |
|
| 46 |
45
|
necomd |
|
| 47 |
11 46
|
eqnetrd |
|