Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annidl.o |
|
2 |
|
ply1annidl.p |
|
3 |
|
ply1annidl.b |
|
4 |
|
ply1annidl.r |
|
5 |
|
ply1annidl.s |
|
6 |
|
ply1annidl.a |
|
7 |
|
ply1annidl.0 |
|
8 |
|
ply1annidl.q |
|
9 |
|
ply1annnr.u |
|
10 |
|
ply1annnr.1 |
|
11 |
8
|
a1i |
|
12 |
4
|
crngringd |
|
13 |
|
eqid |
|
14 |
13
|
subrg1cl |
|
15 |
5 14
|
syl |
|
16 |
3
|
subrgss |
|
17 |
5 16
|
syl |
|
18 |
|
eqid |
|
19 |
18 3 13
|
ress1r |
|
20 |
12 15 17 19
|
syl3anc |
|
21 |
20
|
fveq2d |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
18
|
subrgring |
|
26 |
5 25
|
syl |
|
27 |
2 22 23 24 26
|
ply1ascl1 |
|
28 |
21 27
|
eqtrd |
|
29 |
2
|
ply1ring |
|
30 |
9 24
|
ringidcl |
|
31 |
26 29 30
|
3syl |
|
32 |
28 31
|
eqeltrd |
|
33 |
1 2 18 3 22 4 5 15 6
|
evls1scafv |
|
34 |
13 7
|
nzrnz |
|
35 |
10 34
|
syl |
|
36 |
33 35
|
eqnetrd |
|
37 |
36
|
neneqd |
|
38 |
|
fveq2 |
|
39 |
38
|
fveq1d |
|
40 |
39
|
eqeq1d |
|
41 |
40
|
elrab |
|
42 |
41
|
simprbi |
|
43 |
37 42
|
nsyl |
|
44 |
|
nelne1 |
|
45 |
32 43 44
|
syl2anc |
|
46 |
45
|
necomd |
|
47 |
11 46
|
eqnetrd |
|