Metamath Proof Explorer


Theorem ply1annnr

Description: The set Q of polynomials annihilating an element A is not the whole polynomial ring. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ply1annidl.o O = R evalSub 1 S
ply1annidl.p P = Poly 1 R 𝑠 S
ply1annidl.b B = Base R
ply1annidl.r φ R CRing
ply1annidl.s φ S SubRing R
ply1annidl.a φ A B
ply1annidl.0 0 ˙ = 0 R
ply1annidl.q Q = q dom O | O q A = 0 ˙
ply1annnr.u U = Base P
ply1annnr.1 φ R NzRing
Assertion ply1annnr φ Q U

Proof

Step Hyp Ref Expression
1 ply1annidl.o O = R evalSub 1 S
2 ply1annidl.p P = Poly 1 R 𝑠 S
3 ply1annidl.b B = Base R
4 ply1annidl.r φ R CRing
5 ply1annidl.s φ S SubRing R
6 ply1annidl.a φ A B
7 ply1annidl.0 0 ˙ = 0 R
8 ply1annidl.q Q = q dom O | O q A = 0 ˙
9 ply1annnr.u U = Base P
10 ply1annnr.1 φ R NzRing
11 8 a1i φ Q = q dom O | O q A = 0 ˙
12 4 crngringd φ R Ring
13 eqid 1 R = 1 R
14 13 subrg1cl S SubRing R 1 R S
15 5 14 syl φ 1 R S
16 3 subrgss S SubRing R S B
17 5 16 syl φ S B
18 eqid R 𝑠 S = R 𝑠 S
19 18 3 13 ress1r R Ring 1 R S S B 1 R = 1 R 𝑠 S
20 12 15 17 19 syl3anc φ 1 R = 1 R 𝑠 S
21 20 fveq2d φ algSc P 1 R = algSc P 1 R 𝑠 S
22 eqid algSc P = algSc P
23 eqid 1 R 𝑠 S = 1 R 𝑠 S
24 eqid 1 P = 1 P
25 18 subrgring S SubRing R R 𝑠 S Ring
26 5 25 syl φ R 𝑠 S Ring
27 2 22 23 24 26 ply1ascl1 φ algSc P 1 R 𝑠 S = 1 P
28 21 27 eqtrd φ algSc P 1 R = 1 P
29 2 ply1ring R 𝑠 S Ring P Ring
30 9 24 ringidcl P Ring 1 P U
31 26 29 30 3syl φ 1 P U
32 28 31 eqeltrd φ algSc P 1 R U
33 1 2 18 3 22 4 5 15 6 evls1scafv φ O algSc P 1 R A = 1 R
34 13 7 nzrnz R NzRing 1 R 0 ˙
35 10 34 syl φ 1 R 0 ˙
36 33 35 eqnetrd φ O algSc P 1 R A 0 ˙
37 36 neneqd φ ¬ O algSc P 1 R A = 0 ˙
38 fveq2 q = algSc P 1 R O q = O algSc P 1 R
39 38 fveq1d q = algSc P 1 R O q A = O algSc P 1 R A
40 39 eqeq1d q = algSc P 1 R O q A = 0 ˙ O algSc P 1 R A = 0 ˙
41 40 elrab algSc P 1 R q dom O | O q A = 0 ˙ algSc P 1 R dom O O algSc P 1 R A = 0 ˙
42 41 simprbi algSc P 1 R q dom O | O q A = 0 ˙ O algSc P 1 R A = 0 ˙
43 37 42 nsyl φ ¬ algSc P 1 R q dom O | O q A = 0 ˙
44 nelne1 algSc P 1 R U ¬ algSc P 1 R q dom O | O q A = 0 ˙ U q dom O | O q A = 0 ˙
45 32 43 44 syl2anc φ U q dom O | O q A = 0 ˙
46 45 necomd φ q dom O | O q A = 0 ˙ U
47 11 46 eqnetrd φ Q U