Metamath Proof Explorer


Theorem ply1annig1p

Description: The ideal Q of polynomials annihilating an element A is generated by the ideal's canonical generator. (Contributed by Thierry Arnoux, 9-Feb-2025)

Ref Expression
Hypotheses ply1annig1p.o O = E evalSub 1 F
ply1annig1p.p P = Poly 1 E 𝑠 F
ply1annig1p.b B = Base E
ply1annig1p.e φ E Field
ply1annig1p.f φ F SubDRing E
ply1annig1p.a φ A B
ply1annig1p.0 0 ˙ = 0 E
ply1annig1p.q Q = q dom O | O q A = 0 ˙
ply1annig1p.k K = RSpan P
ply1annig1p.g G = idlGen 1p E 𝑠 F
Assertion ply1annig1p φ Q = K G Q

Proof

Step Hyp Ref Expression
1 ply1annig1p.o O = E evalSub 1 F
2 ply1annig1p.p P = Poly 1 E 𝑠 F
3 ply1annig1p.b B = Base E
4 ply1annig1p.e φ E Field
5 ply1annig1p.f φ F SubDRing E
6 ply1annig1p.a φ A B
7 ply1annig1p.0 0 ˙ = 0 E
8 ply1annig1p.q Q = q dom O | O q A = 0 ˙
9 ply1annig1p.k K = RSpan P
10 ply1annig1p.g G = idlGen 1p E 𝑠 F
11 issdrg F SubDRing E E DivRing F SubRing E E 𝑠 F DivRing
12 5 11 sylib φ E DivRing F SubRing E E 𝑠 F DivRing
13 12 simp3d φ E 𝑠 F DivRing
14 4 fldcrngd φ E CRing
15 12 simp2d φ F SubRing E
16 1 2 3 14 15 6 7 8 ply1annidl φ Q LIdeal P
17 eqid LIdeal P = LIdeal P
18 2 10 17 9 ig1prsp E 𝑠 F DivRing Q LIdeal P Q = K G Q
19 13 16 18 syl2anc φ Q = K G Q