Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annig1p.o |
|- O = ( E evalSub1 F ) |
2 |
|
ply1annig1p.p |
|- P = ( Poly1 ` ( E |`s F ) ) |
3 |
|
ply1annig1p.b |
|- B = ( Base ` E ) |
4 |
|
ply1annig1p.e |
|- ( ph -> E e. Field ) |
5 |
|
ply1annig1p.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
6 |
|
ply1annig1p.a |
|- ( ph -> A e. B ) |
7 |
|
ply1annig1p.0 |
|- .0. = ( 0g ` E ) |
8 |
|
ply1annig1p.q |
|- Q = { q e. dom O | ( ( O ` q ) ` A ) = .0. } |
9 |
|
ply1annig1p.k |
|- K = ( RSpan ` P ) |
10 |
|
ply1annig1p.g |
|- G = ( idlGen1p ` ( E |`s F ) ) |
11 |
|
issdrg |
|- ( F e. ( SubDRing ` E ) <-> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
12 |
5 11
|
sylib |
|- ( ph -> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
13 |
12
|
simp3d |
|- ( ph -> ( E |`s F ) e. DivRing ) |
14 |
4
|
fldcrngd |
|- ( ph -> E e. CRing ) |
15 |
12
|
simp2d |
|- ( ph -> F e. ( SubRing ` E ) ) |
16 |
1 2 3 14 15 6 7 8
|
ply1annidl |
|- ( ph -> Q e. ( LIdeal ` P ) ) |
17 |
|
eqid |
|- ( LIdeal ` P ) = ( LIdeal ` P ) |
18 |
2 10 17 9
|
ig1prsp |
|- ( ( ( E |`s F ) e. DivRing /\ Q e. ( LIdeal ` P ) ) -> Q = ( K ` { ( G ` Q ) } ) ) |
19 |
13 16 18
|
syl2anc |
|- ( ph -> Q = ( K ` { ( G ` Q ) } ) ) |