| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ig1pval.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ig1pval.g |
|- G = ( idlGen1p ` R ) |
| 3 |
|
ig1pcl.u |
|- U = ( LIdeal ` P ) |
| 4 |
|
ig1prsp.k |
|- K = ( RSpan ` P ) |
| 5 |
1 2 3
|
ig1pcl |
|- ( ( R e. DivRing /\ I e. U ) -> ( G ` I ) e. I ) |
| 6 |
|
eqid |
|- ( ||r ` P ) = ( ||r ` P ) |
| 7 |
1 2 3 6
|
ig1pdvds |
|- ( ( R e. DivRing /\ I e. U /\ x e. I ) -> ( G ` I ) ( ||r ` P ) x ) |
| 8 |
7
|
3expa |
|- ( ( ( R e. DivRing /\ I e. U ) /\ x e. I ) -> ( G ` I ) ( ||r ` P ) x ) |
| 9 |
8
|
ralrimiva |
|- ( ( R e. DivRing /\ I e. U ) -> A. x e. I ( G ` I ) ( ||r ` P ) x ) |
| 10 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
| 11 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 12 |
10 11
|
syl |
|- ( R e. DivRing -> P e. Ring ) |
| 13 |
12
|
adantr |
|- ( ( R e. DivRing /\ I e. U ) -> P e. Ring ) |
| 14 |
|
simpr |
|- ( ( R e. DivRing /\ I e. U ) -> I e. U ) |
| 15 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 16 |
15 3
|
lidlss |
|- ( I e. U -> I C_ ( Base ` P ) ) |
| 17 |
16
|
adantl |
|- ( ( R e. DivRing /\ I e. U ) -> I C_ ( Base ` P ) ) |
| 18 |
17 5
|
sseldd |
|- ( ( R e. DivRing /\ I e. U ) -> ( G ` I ) e. ( Base ` P ) ) |
| 19 |
15 3 4 6
|
lidldvgen |
|- ( ( P e. Ring /\ I e. U /\ ( G ` I ) e. ( Base ` P ) ) -> ( I = ( K ` { ( G ` I ) } ) <-> ( ( G ` I ) e. I /\ A. x e. I ( G ` I ) ( ||r ` P ) x ) ) ) |
| 20 |
13 14 18 19
|
syl3anc |
|- ( ( R e. DivRing /\ I e. U ) -> ( I = ( K ` { ( G ` I ) } ) <-> ( ( G ` I ) e. I /\ A. x e. I ( G ` I ) ( ||r ` P ) x ) ) ) |
| 21 |
5 9 20
|
mpbir2and |
|- ( ( R e. DivRing /\ I e. U ) -> I = ( K ` { ( G ` I ) } ) ) |