| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ig1pirred.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ig1pirred.g |
|- G = ( idlGen1p ` R ) |
| 3 |
|
ig1pirred.u |
|- U = ( Base ` P ) |
| 4 |
|
ig1pirred.r |
|- ( ph -> R e. DivRing ) |
| 5 |
|
ig1pirred.1 |
|- ( ph -> I e. ( LIdeal ` P ) ) |
| 6 |
|
ig1pmindeg.d |
|- D = ( deg1 ` R ) |
| 7 |
|
ig1pmindeg.o |
|- .0. = ( 0g ` P ) |
| 8 |
|
ig1pmindeg.2 |
|- ( ph -> F e. I ) |
| 9 |
|
ig1pmindeg.3 |
|- ( ph -> F =/= .0. ) |
| 10 |
8
|
adantr |
|- ( ( ph /\ I = { .0. } ) -> F e. I ) |
| 11 |
|
simpr |
|- ( ( ph /\ I = { .0. } ) -> I = { .0. } ) |
| 12 |
10 11
|
eleqtrd |
|- ( ( ph /\ I = { .0. } ) -> F e. { .0. } ) |
| 13 |
|
elsni |
|- ( F e. { .0. } -> F = .0. ) |
| 14 |
12 13
|
syl |
|- ( ( ph /\ I = { .0. } ) -> F = .0. ) |
| 15 |
9
|
adantr |
|- ( ( ph /\ I = { .0. } ) -> F =/= .0. ) |
| 16 |
14 15
|
pm2.21ddne |
|- ( ( ph /\ I = { .0. } ) -> ( D ` ( G ` I ) ) <_ ( D ` F ) ) |
| 17 |
4
|
adantr |
|- ( ( ph /\ I =/= { .0. } ) -> R e. DivRing ) |
| 18 |
5
|
adantr |
|- ( ( ph /\ I =/= { .0. } ) -> I e. ( LIdeal ` P ) ) |
| 19 |
|
simpr |
|- ( ( ph /\ I =/= { .0. } ) -> I =/= { .0. } ) |
| 20 |
|
eqid |
|- ( LIdeal ` P ) = ( LIdeal ` P ) |
| 21 |
|
eqid |
|- ( Monic1p ` R ) = ( Monic1p ` R ) |
| 22 |
1 2 7 20 6 21
|
ig1pval3 |
|- ( ( R e. DivRing /\ I e. ( LIdeal ` P ) /\ I =/= { .0. } ) -> ( ( G ` I ) e. I /\ ( G ` I ) e. ( Monic1p ` R ) /\ ( D ` ( G ` I ) ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
| 23 |
17 18 19 22
|
syl3anc |
|- ( ( ph /\ I =/= { .0. } ) -> ( ( G ` I ) e. I /\ ( G ` I ) e. ( Monic1p ` R ) /\ ( D ` ( G ` I ) ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
| 24 |
23
|
simp3d |
|- ( ( ph /\ I =/= { .0. } ) -> ( D ` ( G ` I ) ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) |
| 25 |
|
nfv |
|- F/ f ( ph /\ I =/= { .0. } ) |
| 26 |
6 1 3
|
deg1xrf |
|- D : U --> RR* |
| 27 |
26
|
a1i |
|- ( ( ph /\ I =/= { .0. } ) -> D : U --> RR* ) |
| 28 |
27
|
ffund |
|- ( ( ph /\ I =/= { .0. } ) -> Fun D ) |
| 29 |
17
|
drngringd |
|- ( ( ph /\ I =/= { .0. } ) -> R e. Ring ) |
| 30 |
29
|
adantr |
|- ( ( ( ph /\ I =/= { .0. } ) /\ f e. ( I \ { .0. } ) ) -> R e. Ring ) |
| 31 |
3 20
|
lidlss |
|- ( I e. ( LIdeal ` P ) -> I C_ U ) |
| 32 |
18 31
|
syl |
|- ( ( ph /\ I =/= { .0. } ) -> I C_ U ) |
| 33 |
32
|
ssdifssd |
|- ( ( ph /\ I =/= { .0. } ) -> ( I \ { .0. } ) C_ U ) |
| 34 |
33
|
sselda |
|- ( ( ( ph /\ I =/= { .0. } ) /\ f e. ( I \ { .0. } ) ) -> f e. U ) |
| 35 |
|
eldifsni |
|- ( f e. ( I \ { .0. } ) -> f =/= .0. ) |
| 36 |
35
|
adantl |
|- ( ( ( ph /\ I =/= { .0. } ) /\ f e. ( I \ { .0. } ) ) -> f =/= .0. ) |
| 37 |
6 1 7 3
|
deg1nn0cl |
|- ( ( R e. Ring /\ f e. U /\ f =/= .0. ) -> ( D ` f ) e. NN0 ) |
| 38 |
30 34 36 37
|
syl3anc |
|- ( ( ( ph /\ I =/= { .0. } ) /\ f e. ( I \ { .0. } ) ) -> ( D ` f ) e. NN0 ) |
| 39 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 40 |
38 39
|
eleqtrdi |
|- ( ( ( ph /\ I =/= { .0. } ) /\ f e. ( I \ { .0. } ) ) -> ( D ` f ) e. ( ZZ>= ` 0 ) ) |
| 41 |
25 28 40
|
funimassd |
|- ( ( ph /\ I =/= { .0. } ) -> ( D " ( I \ { .0. } ) ) C_ ( ZZ>= ` 0 ) ) |
| 42 |
27
|
ffnd |
|- ( ( ph /\ I =/= { .0. } ) -> D Fn U ) |
| 43 |
8
|
adantr |
|- ( ( ph /\ I =/= { .0. } ) -> F e. I ) |
| 44 |
32 43
|
sseldd |
|- ( ( ph /\ I =/= { .0. } ) -> F e. U ) |
| 45 |
9
|
adantr |
|- ( ( ph /\ I =/= { .0. } ) -> F =/= .0. ) |
| 46 |
|
nelsn |
|- ( F =/= .0. -> -. F e. { .0. } ) |
| 47 |
45 46
|
syl |
|- ( ( ph /\ I =/= { .0. } ) -> -. F e. { .0. } ) |
| 48 |
43 47
|
eldifd |
|- ( ( ph /\ I =/= { .0. } ) -> F e. ( I \ { .0. } ) ) |
| 49 |
42 44 48
|
fnfvimad |
|- ( ( ph /\ I =/= { .0. } ) -> ( D ` F ) e. ( D " ( I \ { .0. } ) ) ) |
| 50 |
|
infssuzle |
|- ( ( ( D " ( I \ { .0. } ) ) C_ ( ZZ>= ` 0 ) /\ ( D ` F ) e. ( D " ( I \ { .0. } ) ) ) -> inf ( ( D " ( I \ { .0. } ) ) , RR , < ) <_ ( D ` F ) ) |
| 51 |
41 49 50
|
syl2anc |
|- ( ( ph /\ I =/= { .0. } ) -> inf ( ( D " ( I \ { .0. } ) ) , RR , < ) <_ ( D ` F ) ) |
| 52 |
24 51
|
eqbrtrd |
|- ( ( ph /\ I =/= { .0. } ) -> ( D ` ( G ` I ) ) <_ ( D ` F ) ) |
| 53 |
16 52
|
pm2.61dane |
|- ( ph -> ( D ` ( G ` I ) ) <_ ( D ` F ) ) |