| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funimassd.1 |
|- F/ x ph |
| 2 |
|
funimassd.2 |
|- ( ph -> Fun F ) |
| 3 |
|
funimassd.3 |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. B ) |
| 4 |
|
fvelima |
|- ( ( Fun F /\ y e. ( F " A ) ) -> E. x e. A ( F ` x ) = y ) |
| 5 |
2 4
|
sylan |
|- ( ( ph /\ y e. ( F " A ) ) -> E. x e. A ( F ` x ) = y ) |
| 6 |
|
nfv |
|- F/ x y e. ( F " A ) |
| 7 |
1 6
|
nfan |
|- F/ x ( ph /\ y e. ( F " A ) ) |
| 8 |
|
nfv |
|- F/ x y e. B |
| 9 |
|
id |
|- ( ( F ` x ) = y -> ( F ` x ) = y ) |
| 10 |
9
|
eqcomd |
|- ( ( F ` x ) = y -> y = ( F ` x ) ) |
| 11 |
10
|
3ad2ant3 |
|- ( ( ph /\ x e. A /\ ( F ` x ) = y ) -> y = ( F ` x ) ) |
| 12 |
3
|
3adant3 |
|- ( ( ph /\ x e. A /\ ( F ` x ) = y ) -> ( F ` x ) e. B ) |
| 13 |
11 12
|
eqeltrd |
|- ( ( ph /\ x e. A /\ ( F ` x ) = y ) -> y e. B ) |
| 14 |
13
|
3exp |
|- ( ph -> ( x e. A -> ( ( F ` x ) = y -> y e. B ) ) ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ y e. ( F " A ) ) -> ( x e. A -> ( ( F ` x ) = y -> y e. B ) ) ) |
| 16 |
7 8 15
|
rexlimd |
|- ( ( ph /\ y e. ( F " A ) ) -> ( E. x e. A ( F ` x ) = y -> y e. B ) ) |
| 17 |
5 16
|
mpd |
|- ( ( ph /\ y e. ( F " A ) ) -> y e. B ) |
| 18 |
17
|
ex |
|- ( ph -> ( y e. ( F " A ) -> y e. B ) ) |
| 19 |
18
|
ssrdv |
|- ( ph -> ( F " A ) C_ B ) |