Step |
Hyp |
Ref |
Expression |
1 |
|
funimassd.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
funimassd.2 |
⊢ ( 𝜑 → Fun 𝐹 ) |
3 |
|
funimassd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
4 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ ( 𝐹 “ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
5 |
2 4
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐹 “ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
6 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ ( 𝐹 “ 𝐴 ) |
7 |
1 6
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ ( 𝐹 “ 𝐴 ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 |
9 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
10 |
9
|
eqcomd |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
12 |
3
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
13 |
11 12
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐵 ) |
14 |
13
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ 𝐵 ) ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐹 “ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ 𝐵 ) ) ) |
16 |
7 8 15
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐹 “ 𝐴 ) ) → ( ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ 𝐵 ) ) |
17 |
5 16
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐹 “ 𝐴 ) ) → 𝑦 ∈ 𝐵 ) |
18 |
17
|
ssd |
⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ) |