| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ig1pirred.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ig1pirred.g |
⊢ 𝐺 = ( idlGen1p ‘ 𝑅 ) |
| 3 |
|
ig1pirred.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 4 |
|
ig1pirred.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| 5 |
|
ig1pirred.1 |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑃 ) ) |
| 6 |
|
ig1pmindeg.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 7 |
|
ig1pmindeg.o |
⊢ 0 = ( 0g ‘ 𝑃 ) |
| 8 |
|
ig1pmindeg.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐼 ) |
| 9 |
|
ig1pmindeg.3 |
⊢ ( 𝜑 → 𝐹 ≠ 0 ) |
| 10 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = { 0 } ) → 𝐹 ∈ 𝐼 ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐼 = { 0 } ) → 𝐼 = { 0 } ) |
| 12 |
10 11
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐼 = { 0 } ) → 𝐹 ∈ { 0 } ) |
| 13 |
|
elsni |
⊢ ( 𝐹 ∈ { 0 } → 𝐹 = 0 ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 = { 0 } ) → 𝐹 = 0 ) |
| 15 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = { 0 } ) → 𝐹 ≠ 0 ) |
| 16 |
14 15
|
pm2.21ddne |
⊢ ( ( 𝜑 ∧ 𝐼 = { 0 } ) → ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) ≤ ( 𝐷 ‘ 𝐹 ) ) |
| 17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝑅 ∈ DivRing ) |
| 18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐼 ∈ ( LIdeal ‘ 𝑃 ) ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐼 ≠ { 0 } ) |
| 20 |
|
eqid |
⊢ ( LIdeal ‘ 𝑃 ) = ( LIdeal ‘ 𝑃 ) |
| 21 |
|
eqid |
⊢ ( Monic1p ‘ 𝑅 ) = ( Monic1p ‘ 𝑅 ) |
| 22 |
1 2 7 20 6 21
|
ig1pval3 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑃 ) ∧ 𝐼 ≠ { 0 } ) → ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ∧ ( 𝐺 ‘ 𝐼 ) ∈ ( Monic1p ‘ 𝑅 ) ∧ ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
| 23 |
17 18 19 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ∧ ( 𝐺 ‘ 𝐼 ) ∈ ( Monic1p ‘ 𝑅 ) ∧ ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
| 24 |
23
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) |
| 25 |
|
nfv |
⊢ Ⅎ 𝑓 ( 𝜑 ∧ 𝐼 ≠ { 0 } ) |
| 26 |
6 1 3
|
deg1xrf |
⊢ 𝐷 : 𝑈 ⟶ ℝ* |
| 27 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐷 : 𝑈 ⟶ ℝ* ) |
| 28 |
27
|
ffund |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → Fun 𝐷 ) |
| 29 |
17
|
drngringd |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝑅 ∈ Ring ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → 𝑅 ∈ Ring ) |
| 31 |
3 20
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ 𝑃 ) → 𝐼 ⊆ 𝑈 ) |
| 32 |
18 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐼 ⊆ 𝑈 ) |
| 33 |
32
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → ( 𝐼 ∖ { 0 } ) ⊆ 𝑈 ) |
| 34 |
33
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → 𝑓 ∈ 𝑈 ) |
| 35 |
|
eldifsni |
⊢ ( 𝑓 ∈ ( 𝐼 ∖ { 0 } ) → 𝑓 ≠ 0 ) |
| 36 |
35
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → 𝑓 ≠ 0 ) |
| 37 |
6 1 7 3
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ 𝑈 ∧ 𝑓 ≠ 0 ) → ( 𝐷 ‘ 𝑓 ) ∈ ℕ0 ) |
| 38 |
30 34 36 37
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → ( 𝐷 ‘ 𝑓 ) ∈ ℕ0 ) |
| 39 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 40 |
38 39
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → ( 𝐷 ‘ 𝑓 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 41 |
25 28 40
|
funimassd |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ( ℤ≥ ‘ 0 ) ) |
| 42 |
27
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐷 Fn 𝑈 ) |
| 43 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐹 ∈ 𝐼 ) |
| 44 |
32 43
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐹 ∈ 𝑈 ) |
| 45 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐹 ≠ 0 ) |
| 46 |
|
nelsn |
⊢ ( 𝐹 ≠ 0 → ¬ 𝐹 ∈ { 0 } ) |
| 47 |
45 46
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → ¬ 𝐹 ∈ { 0 } ) |
| 48 |
43 47
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐹 ∈ ( 𝐼 ∖ { 0 } ) ) |
| 49 |
42 44 48
|
fnfvimad |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → ( 𝐷 ‘ 𝐹 ) ∈ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ) |
| 50 |
|
infssuzle |
⊢ ( ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ( ℤ≥ ‘ 0 ) ∧ ( 𝐷 ‘ 𝐹 ) ∈ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ) → inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ≤ ( 𝐷 ‘ 𝐹 ) ) |
| 51 |
41 49 50
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ≤ ( 𝐷 ‘ 𝐹 ) ) |
| 52 |
24 51
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) ≤ ( 𝐷 ‘ 𝐹 ) ) |
| 53 |
16 52
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) ≤ ( 𝐷 ‘ 𝐹 ) ) |