| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ig1pval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ig1pval.g |
⊢ 𝐺 = ( idlGen1p ‘ 𝑅 ) |
| 3 |
|
ig1pval3.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
| 4 |
|
ig1pval3.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑃 ) |
| 5 |
|
ig1pval3.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 6 |
|
ig1pval3.m |
⊢ 𝑀 = ( Monic1p ‘ 𝑅 ) |
| 7 |
1 2 3 4 5 6
|
ig1pval |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ) → ( 𝐺 ‘ 𝐼 ) = if ( 𝐼 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) ) |
| 8 |
7
|
3adant3 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( 𝐺 ‘ 𝐼 ) = if ( 𝐼 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) ) |
| 9 |
|
simp3 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → 𝐼 ≠ { 0 } ) |
| 10 |
9
|
neneqd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ¬ 𝐼 = { 0 } ) |
| 11 |
10
|
iffalsed |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → if ( 𝐼 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) = ( ℩ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
| 12 |
8 11
|
eqtrd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( 𝐺 ‘ 𝐼 ) = ( ℩ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
| 13 |
1 4 3 6 5
|
ig1peu |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ∃! 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) |
| 14 |
|
riotacl2 |
⊢ ( ∃! 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) → ( ℩ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ∈ { 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∣ ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) } ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( ℩ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ∈ { 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∣ ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) } ) |
| 16 |
12 15
|
eqeltrd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( 𝐺 ‘ 𝐼 ) ∈ { 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∣ ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) } ) |
| 17 |
|
elin |
⊢ ( ( 𝐺 ‘ 𝐼 ) ∈ ( 𝐼 ∩ 𝑀 ) ↔ ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ∧ ( 𝐺 ‘ 𝐼 ) ∈ 𝑀 ) ) |
| 18 |
17
|
anbi1i |
⊢ ( ( ( 𝐺 ‘ 𝐼 ) ∈ ( 𝐼 ∩ 𝑀 ) ∧ ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ↔ ( ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ∧ ( 𝐺 ‘ 𝐼 ) ∈ 𝑀 ) ∧ ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
| 19 |
|
fveqeq2 |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝐼 ) → ( ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ↔ ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
| 20 |
19
|
elrab |
⊢ ( ( 𝐺 ‘ 𝐼 ) ∈ { 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∣ ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) } ↔ ( ( 𝐺 ‘ 𝐼 ) ∈ ( 𝐼 ∩ 𝑀 ) ∧ ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
| 21 |
|
df-3an |
⊢ ( ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ∧ ( 𝐺 ‘ 𝐼 ) ∈ 𝑀 ∧ ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ↔ ( ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ∧ ( 𝐺 ‘ 𝐼 ) ∈ 𝑀 ) ∧ ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
| 22 |
18 20 21
|
3bitr4i |
⊢ ( ( 𝐺 ‘ 𝐼 ) ∈ { 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∣ ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) } ↔ ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ∧ ( 𝐺 ‘ 𝐼 ) ∈ 𝑀 ∧ ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
| 23 |
16 22
|
sylib |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ∧ ( 𝐺 ‘ 𝐼 ) ∈ 𝑀 ∧ ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |