| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1annig1p.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
| 2 |
|
ply1annig1p.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 3 |
|
ply1annig1p.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 4 |
|
ply1annig1p.e |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 5 |
|
ply1annig1p.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 6 |
|
ply1annig1p.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 7 |
|
minplyirred.1 |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
| 8 |
|
minplyirred.2 |
⊢ 𝑍 = ( 0g ‘ 𝑃 ) |
| 9 |
|
minplyirred.3 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≠ 𝑍 ) |
| 10 |
|
minplyirredlem.1 |
⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ 𝑃 ) ) |
| 11 |
|
minplyirredlem.2 |
⊢ ( 𝜑 → 𝐻 ∈ ( Base ‘ 𝑃 ) ) |
| 12 |
|
minplyirredlem.3 |
⊢ ( 𝜑 → ( 𝐺 ( .r ‘ 𝑃 ) 𝐻 ) = ( 𝑀 ‘ 𝐴 ) ) |
| 13 |
|
minplyirredlem.4 |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) |
| 14 |
|
minplyirredlem.5 |
⊢ ( 𝜑 → 𝐺 ≠ 𝑍 ) |
| 15 |
|
minplyirredlem.6 |
⊢ ( 𝜑 → 𝐻 ≠ 𝑍 ) |
| 16 |
|
eqid |
⊢ ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) |
| 17 |
16
|
sdrgdrng |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 18 |
5 17
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 19 |
18
|
drngringd |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Ring ) |
| 20 |
|
eqid |
⊢ ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) = ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 22 |
20 2 8 21
|
deg1nn0cl |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ 𝐺 ∈ ( Base ‘ 𝑃 ) ∧ 𝐺 ≠ 𝑍 ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) ∈ ℕ0 ) |
| 23 |
19 10 14 22
|
syl3anc |
⊢ ( 𝜑 → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) ∈ ℕ0 ) |
| 24 |
23
|
nn0red |
⊢ ( 𝜑 → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) ∈ ℝ ) |
| 25 |
20 2 8 21
|
deg1nn0cl |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ 𝐻 ∈ ( Base ‘ 𝑃 ) ∧ 𝐻 ≠ 𝑍 ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐻 ) ∈ ℕ0 ) |
| 26 |
19 11 15 25
|
syl3anc |
⊢ ( 𝜑 → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐻 ) ∈ ℕ0 ) |
| 27 |
26
|
nn0red |
⊢ ( 𝜑 → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐻 ) ∈ ℝ ) |
| 28 |
|
eqid |
⊢ ( RLReg ‘ ( 𝐸 ↾s 𝐹 ) ) = ( RLReg ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 29 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 30 |
|
fldsdrgfld |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 31 |
4 5 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 32 |
|
fldidom |
⊢ ( ( 𝐸 ↾s 𝐹 ) ∈ Field → ( 𝐸 ↾s 𝐹 ) ∈ IDomn ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ IDomn ) |
| 34 |
33
|
idomdomd |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Domn ) |
| 35 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
| 36 |
20 2 8 21 28 35
|
deg1ldgdomn |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ Domn ∧ 𝐺 ∈ ( Base ‘ 𝑃 ) ∧ 𝐺 ≠ 𝑍 ) → ( ( coe1 ‘ 𝐺 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) ) ∈ ( RLReg ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 37 |
34 10 14 36
|
syl3anc |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) ) ∈ ( RLReg ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 38 |
20 2 28 21 29 8 19 10 14 37 11 15
|
deg1mul2 |
⊢ ( 𝜑 → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( .r ‘ 𝑃 ) 𝐻 ) ) = ( ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) + ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐻 ) ) ) |
| 39 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
| 40 |
|
eqid |
⊢ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } |
| 41 |
|
eqid |
⊢ ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 ) |
| 42 |
|
eqid |
⊢ ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 43 |
1 2 3 4 5 6 39 40 41 42 7
|
minplyval |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ) |
| 44 |
12 43
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ( .r ‘ 𝑃 ) 𝐻 ) = ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ) |
| 45 |
44
|
fveq2d |
⊢ ( 𝜑 → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( .r ‘ 𝑃 ) 𝐻 ) ) = ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ) ) |
| 46 |
4
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 47 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 48 |
5 47
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 49 |
1 2 3 46 48 6 39 40
|
ply1annidl |
⊢ ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ∈ ( LIdeal ‘ 𝑃 ) ) |
| 50 |
|
fveq2 |
⊢ ( 𝑞 = 𝐺 → ( 𝑂 ‘ 𝑞 ) = ( 𝑂 ‘ 𝐺 ) ) |
| 51 |
50
|
fveq1d |
⊢ ( 𝑞 = 𝐺 → ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) ) |
| 52 |
51
|
eqeq1d |
⊢ ( 𝑞 = 𝐺 → ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ↔ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) ) |
| 53 |
1 2 21 46 48
|
evls1dm |
⊢ ( 𝜑 → dom 𝑂 = ( Base ‘ 𝑃 ) ) |
| 54 |
10 53
|
eleqtrrd |
⊢ ( 𝜑 → 𝐺 ∈ dom 𝑂 ) |
| 55 |
52 54 13
|
elrabd |
⊢ ( 𝜑 → 𝐺 ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) |
| 56 |
2 42 21 18 49 20 8 55 14
|
ig1pmindeg |
⊢ ( 𝜑 → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ) ≤ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) ) |
| 57 |
45 56
|
eqbrtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( .r ‘ 𝑃 ) 𝐻 ) ) ≤ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) ) |
| 58 |
38 57
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) + ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐻 ) ) ≤ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) ) |
| 59 |
|
leaddle0 |
⊢ ( ( ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) ∈ ℝ ∧ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐻 ) ∈ ℝ ) → ( ( ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) + ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐻 ) ) ≤ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) ↔ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐻 ) ≤ 0 ) ) |
| 60 |
59
|
biimpa |
⊢ ( ( ( ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) ∈ ℝ ∧ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐻 ) ∈ ℝ ) ∧ ( ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) + ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐻 ) ) ≤ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐺 ) ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐻 ) ≤ 0 ) |
| 61 |
24 27 58 60
|
syl21anc |
⊢ ( 𝜑 → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐻 ) ≤ 0 ) |
| 62 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 63 |
20 2 21 62
|
deg1le0 |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ 𝐻 ∈ ( Base ‘ 𝑃 ) ) → ( ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐻 ) ≤ 0 ↔ 𝐻 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐻 ) ‘ 0 ) ) ) ) |
| 64 |
63
|
biimpa |
⊢ ( ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ 𝐻 ∈ ( Base ‘ 𝑃 ) ) ∧ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝐻 ) ≤ 0 ) → 𝐻 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐻 ) ‘ 0 ) ) ) |
| 65 |
19 11 61 64
|
syl21anc |
⊢ ( 𝜑 → 𝐻 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐻 ) ‘ 0 ) ) ) |
| 66 |
|
eqid |
⊢ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 67 |
|
eqid |
⊢ ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) = ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 68 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 69 |
|
eqid |
⊢ ( coe1 ‘ 𝐻 ) = ( coe1 ‘ 𝐻 ) |
| 70 |
69 21 2 66
|
coe1fvalcl |
⊢ ( ( 𝐻 ∈ ( Base ‘ 𝑃 ) ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐻 ) ‘ 0 ) ∈ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 71 |
11 68 70
|
sylancl |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐻 ) ‘ 0 ) ∈ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 72 |
20 2 67 21 8 19 11 61
|
deg1le0eq0 |
⊢ ( 𝜑 → ( 𝐻 = 𝑍 ↔ ( ( coe1 ‘ 𝐻 ) ‘ 0 ) = ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 73 |
72
|
necon3bid |
⊢ ( 𝜑 → ( 𝐻 ≠ 𝑍 ↔ ( ( coe1 ‘ 𝐻 ) ‘ 0 ) ≠ ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 74 |
15 73
|
mpbid |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐻 ) ‘ 0 ) ≠ ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 75 |
2 62 66 67 31 71 74
|
ply1asclunit |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐻 ) ‘ 0 ) ) ∈ ( Unit ‘ 𝑃 ) ) |
| 76 |
65 75
|
eqeltrd |
⊢ ( 𝜑 → 𝐻 ∈ ( Unit ‘ 𝑃 ) ) |