Metamath Proof Explorer


Theorem minplyirredlem

Description: Lemma for minplyirred . (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ply1annig1p.o 𝑂 = ( 𝐸 evalSub1 𝐹 )
ply1annig1p.p 𝑃 = ( Poly1 ‘ ( 𝐸s 𝐹 ) )
ply1annig1p.b 𝐵 = ( Base ‘ 𝐸 )
ply1annig1p.e ( 𝜑𝐸 ∈ Field )
ply1annig1p.f ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
ply1annig1p.a ( 𝜑𝐴𝐵 )
minplyirred.1 𝑀 = ( 𝐸 minPoly 𝐹 )
minplyirred.2 𝑍 = ( 0g𝑃 )
minplyirred.3 ( 𝜑 → ( 𝑀𝐴 ) ≠ 𝑍 )
minplyirredlem.1 ( 𝜑𝐺 ∈ ( Base ‘ 𝑃 ) )
minplyirredlem.2 ( 𝜑𝐻 ∈ ( Base ‘ 𝑃 ) )
minplyirredlem.3 ( 𝜑 → ( 𝐺 ( .r𝑃 ) 𝐻 ) = ( 𝑀𝐴 ) )
minplyirredlem.4 ( 𝜑 → ( ( 𝑂𝐺 ) ‘ 𝐴 ) = ( 0g𝐸 ) )
minplyirredlem.5 ( 𝜑𝐺𝑍 )
minplyirredlem.6 ( 𝜑𝐻𝑍 )
Assertion minplyirredlem ( 𝜑𝐻 ∈ ( Unit ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 ply1annig1p.o 𝑂 = ( 𝐸 evalSub1 𝐹 )
2 ply1annig1p.p 𝑃 = ( Poly1 ‘ ( 𝐸s 𝐹 ) )
3 ply1annig1p.b 𝐵 = ( Base ‘ 𝐸 )
4 ply1annig1p.e ( 𝜑𝐸 ∈ Field )
5 ply1annig1p.f ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
6 ply1annig1p.a ( 𝜑𝐴𝐵 )
7 minplyirred.1 𝑀 = ( 𝐸 minPoly 𝐹 )
8 minplyirred.2 𝑍 = ( 0g𝑃 )
9 minplyirred.3 ( 𝜑 → ( 𝑀𝐴 ) ≠ 𝑍 )
10 minplyirredlem.1 ( 𝜑𝐺 ∈ ( Base ‘ 𝑃 ) )
11 minplyirredlem.2 ( 𝜑𝐻 ∈ ( Base ‘ 𝑃 ) )
12 minplyirredlem.3 ( 𝜑 → ( 𝐺 ( .r𝑃 ) 𝐻 ) = ( 𝑀𝐴 ) )
13 minplyirredlem.4 ( 𝜑 → ( ( 𝑂𝐺 ) ‘ 𝐴 ) = ( 0g𝐸 ) )
14 minplyirredlem.5 ( 𝜑𝐺𝑍 )
15 minplyirredlem.6 ( 𝜑𝐻𝑍 )
16 eqid ( 𝐸s 𝐹 ) = ( 𝐸s 𝐹 )
17 16 sdrgdrng ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → ( 𝐸s 𝐹 ) ∈ DivRing )
18 5 17 syl ( 𝜑 → ( 𝐸s 𝐹 ) ∈ DivRing )
19 18 drngringd ( 𝜑 → ( 𝐸s 𝐹 ) ∈ Ring )
20 eqid ( deg1 ‘ ( 𝐸s 𝐹 ) ) = ( deg1 ‘ ( 𝐸s 𝐹 ) )
21 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
22 20 2 8 21 deg1nn0cl ( ( ( 𝐸s 𝐹 ) ∈ Ring ∧ 𝐺 ∈ ( Base ‘ 𝑃 ) ∧ 𝐺𝑍 ) → ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) ∈ ℕ0 )
23 19 10 14 22 syl3anc ( 𝜑 → ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) ∈ ℕ0 )
24 23 nn0red ( 𝜑 → ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) ∈ ℝ )
25 20 2 8 21 deg1nn0cl ( ( ( 𝐸s 𝐹 ) ∈ Ring ∧ 𝐻 ∈ ( Base ‘ 𝑃 ) ∧ 𝐻𝑍 ) → ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐻 ) ∈ ℕ0 )
26 19 11 15 25 syl3anc ( 𝜑 → ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐻 ) ∈ ℕ0 )
27 26 nn0red ( 𝜑 → ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐻 ) ∈ ℝ )
28 eqid ( RLReg ‘ ( 𝐸s 𝐹 ) ) = ( RLReg ‘ ( 𝐸s 𝐹 ) )
29 eqid ( .r𝑃 ) = ( .r𝑃 )
30 fldsdrgfld ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) → ( 𝐸s 𝐹 ) ∈ Field )
31 4 5 30 syl2anc ( 𝜑 → ( 𝐸s 𝐹 ) ∈ Field )
32 fldidom ( ( 𝐸s 𝐹 ) ∈ Field → ( 𝐸s 𝐹 ) ∈ IDomn )
33 31 32 syl ( 𝜑 → ( 𝐸s 𝐹 ) ∈ IDomn )
34 33 idomdomd ( 𝜑 → ( 𝐸s 𝐹 ) ∈ Domn )
35 eqid ( coe1𝐺 ) = ( coe1𝐺 )
36 20 2 8 21 28 35 deg1ldgdomn ( ( ( 𝐸s 𝐹 ) ∈ Domn ∧ 𝐺 ∈ ( Base ‘ 𝑃 ) ∧ 𝐺𝑍 ) → ( ( coe1𝐺 ) ‘ ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) ) ∈ ( RLReg ‘ ( 𝐸s 𝐹 ) ) )
37 34 10 14 36 syl3anc ( 𝜑 → ( ( coe1𝐺 ) ‘ ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) ) ∈ ( RLReg ‘ ( 𝐸s 𝐹 ) ) )
38 20 2 28 21 29 8 19 10 14 37 11 15 deg1mul2 ( 𝜑 → ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ ( 𝐺 ( .r𝑃 ) 𝐻 ) ) = ( ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) + ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐻 ) ) )
39 eqid ( 0g𝐸 ) = ( 0g𝐸 )
40 eqid { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) }
41 eqid ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 )
42 eqid ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸s 𝐹 ) )
43 1 2 3 4 5 6 39 40 41 42 7 minplyval ( 𝜑 → ( 𝑀𝐴 ) = ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) )
44 12 43 eqtrd ( 𝜑 → ( 𝐺 ( .r𝑃 ) 𝐻 ) = ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) )
45 44 fveq2d ( 𝜑 → ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ ( 𝐺 ( .r𝑃 ) 𝐻 ) ) = ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ) )
46 4 fldcrngd ( 𝜑𝐸 ∈ CRing )
47 sdrgsubrg ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) )
48 5 47 syl ( 𝜑𝐹 ∈ ( SubRing ‘ 𝐸 ) )
49 1 2 3 46 48 6 39 40 ply1annidl ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ∈ ( LIdeal ‘ 𝑃 ) )
50 fveq2 ( 𝑞 = 𝐺 → ( 𝑂𝑞 ) = ( 𝑂𝐺 ) )
51 50 fveq1d ( 𝑞 = 𝐺 → ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( ( 𝑂𝐺 ) ‘ 𝐴 ) )
52 51 eqeq1d ( 𝑞 = 𝐺 → ( ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) ↔ ( ( 𝑂𝐺 ) ‘ 𝐴 ) = ( 0g𝐸 ) ) )
53 1 2 21 46 48 evls1dm ( 𝜑 → dom 𝑂 = ( Base ‘ 𝑃 ) )
54 10 53 eleqtrrd ( 𝜑𝐺 ∈ dom 𝑂 )
55 52 54 13 elrabd ( 𝜑𝐺 ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } )
56 2 42 21 18 49 20 8 55 14 ig1pmindeg ( 𝜑 → ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ) ≤ ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) )
57 45 56 eqbrtrd ( 𝜑 → ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ ( 𝐺 ( .r𝑃 ) 𝐻 ) ) ≤ ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) )
58 38 57 eqbrtrrd ( 𝜑 → ( ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) + ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐻 ) ) ≤ ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) )
59 leaddle0 ( ( ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) ∈ ℝ ∧ ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐻 ) ∈ ℝ ) → ( ( ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) + ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐻 ) ) ≤ ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) ↔ ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐻 ) ≤ 0 ) )
60 59 biimpa ( ( ( ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) ∈ ℝ ∧ ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐻 ) ∈ ℝ ) ∧ ( ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) + ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐻 ) ) ≤ ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐺 ) ) → ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐻 ) ≤ 0 )
61 24 27 58 60 syl21anc ( 𝜑 → ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐻 ) ≤ 0 )
62 eqid ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 )
63 20 2 21 62 deg1le0 ( ( ( 𝐸s 𝐹 ) ∈ Ring ∧ 𝐻 ∈ ( Base ‘ 𝑃 ) ) → ( ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐻 ) ≤ 0 ↔ 𝐻 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1𝐻 ) ‘ 0 ) ) ) )
64 63 biimpa ( ( ( ( 𝐸s 𝐹 ) ∈ Ring ∧ 𝐻 ∈ ( Base ‘ 𝑃 ) ) ∧ ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ 𝐻 ) ≤ 0 ) → 𝐻 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1𝐻 ) ‘ 0 ) ) )
65 19 11 61 64 syl21anc ( 𝜑𝐻 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1𝐻 ) ‘ 0 ) ) )
66 eqid ( Base ‘ ( 𝐸s 𝐹 ) ) = ( Base ‘ ( 𝐸s 𝐹 ) )
67 eqid ( 0g ‘ ( 𝐸s 𝐹 ) ) = ( 0g ‘ ( 𝐸s 𝐹 ) )
68 0nn0 0 ∈ ℕ0
69 eqid ( coe1𝐻 ) = ( coe1𝐻 )
70 69 21 2 66 coe1fvalcl ( ( 𝐻 ∈ ( Base ‘ 𝑃 ) ∧ 0 ∈ ℕ0 ) → ( ( coe1𝐻 ) ‘ 0 ) ∈ ( Base ‘ ( 𝐸s 𝐹 ) ) )
71 11 68 70 sylancl ( 𝜑 → ( ( coe1𝐻 ) ‘ 0 ) ∈ ( Base ‘ ( 𝐸s 𝐹 ) ) )
72 20 2 67 21 8 19 11 61 deg1le0eq0 ( 𝜑 → ( 𝐻 = 𝑍 ↔ ( ( coe1𝐻 ) ‘ 0 ) = ( 0g ‘ ( 𝐸s 𝐹 ) ) ) )
73 72 necon3bid ( 𝜑 → ( 𝐻𝑍 ↔ ( ( coe1𝐻 ) ‘ 0 ) ≠ ( 0g ‘ ( 𝐸s 𝐹 ) ) ) )
74 15 73 mpbid ( 𝜑 → ( ( coe1𝐻 ) ‘ 0 ) ≠ ( 0g ‘ ( 𝐸s 𝐹 ) ) )
75 2 62 66 67 31 71 74 ply1asclunit ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1𝐻 ) ‘ 0 ) ) ∈ ( Unit ‘ 𝑃 ) )
76 65 75 eqeltrd ( 𝜑𝐻 ∈ ( Unit ‘ 𝑃 ) )