| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1asclunit.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝐹 ) |
| 2 |
|
ply1asclunit.2 |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 3 |
|
ply1asclunit.3 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 4 |
|
ply1asclunit.4 |
⊢ 0 = ( 0g ‘ 𝐹 ) |
| 5 |
|
ply1asclunit.5 |
⊢ ( 𝜑 → 𝐹 ∈ Field ) |
| 6 |
|
ply1asclunit.6 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
ply1asclunit.7 |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
| 8 |
5
|
fldcrngd |
⊢ ( 𝜑 → 𝐹 ∈ CRing ) |
| 9 |
1
|
ply1assa |
⊢ ( 𝐹 ∈ CRing → 𝑃 ∈ AssAlg ) |
| 10 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 11 |
2 10
|
asclrhm |
⊢ ( 𝑃 ∈ AssAlg → 𝐴 ∈ ( ( Scalar ‘ 𝑃 ) RingHom 𝑃 ) ) |
| 12 |
8 9 11
|
3syl |
⊢ ( 𝜑 → 𝐴 ∈ ( ( Scalar ‘ 𝑃 ) RingHom 𝑃 ) ) |
| 13 |
1
|
ply1sca |
⊢ ( 𝐹 ∈ Field → 𝐹 = ( Scalar ‘ 𝑃 ) ) |
| 14 |
5 13
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑃 ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝜑 → ( 𝐹 RingHom 𝑃 ) = ( ( Scalar ‘ 𝑃 ) RingHom 𝑃 ) ) |
| 16 |
12 15
|
eleqtrrd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐹 RingHom 𝑃 ) ) |
| 17 |
5
|
flddrngd |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 18 |
|
eqid |
⊢ ( Unit ‘ 𝐹 ) = ( Unit ‘ 𝐹 ) |
| 19 |
3 18 4
|
drngunit |
⊢ ( 𝐹 ∈ DivRing → ( 𝑌 ∈ ( Unit ‘ 𝐹 ) ↔ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) ) |
| 20 |
19
|
biimpar |
⊢ ( ( 𝐹 ∈ DivRing ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑌 ∈ ( Unit ‘ 𝐹 ) ) |
| 21 |
17 6 7 20
|
syl12anc |
⊢ ( 𝜑 → 𝑌 ∈ ( Unit ‘ 𝐹 ) ) |
| 22 |
|
elrhmunit |
⊢ ( ( 𝐴 ∈ ( 𝐹 RingHom 𝑃 ) ∧ 𝑌 ∈ ( Unit ‘ 𝐹 ) ) → ( 𝐴 ‘ 𝑌 ) ∈ ( Unit ‘ 𝑃 ) ) |
| 23 |
16 21 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑌 ) ∈ ( Unit ‘ 𝑃 ) ) |