Description: Lemma for minplyirred . (Contributed by Thierry Arnoux, 22-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1annig1p.o | |
|
ply1annig1p.p | |
||
ply1annig1p.b | |
||
ply1annig1p.e | |
||
ply1annig1p.f | |
||
ply1annig1p.a | |
||
minplyirred.1 | No typesetting found for |- M = ( E minPoly F ) with typecode |- | ||
minplyirred.2 | |
||
minplyirred.3 | |
||
minplyirredlem.1 | |
||
minplyirredlem.2 | |
||
minplyirredlem.3 | |
||
minplyirredlem.4 | |
||
minplyirredlem.5 | |
||
minplyirredlem.6 | |
||
Assertion | minplyirredlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1annig1p.o | |
|
2 | ply1annig1p.p | |
|
3 | ply1annig1p.b | |
|
4 | ply1annig1p.e | |
|
5 | ply1annig1p.f | |
|
6 | ply1annig1p.a | |
|
7 | minplyirred.1 | Could not format M = ( E minPoly F ) : No typesetting found for |- M = ( E minPoly F ) with typecode |- | |
8 | minplyirred.2 | |
|
9 | minplyirred.3 | |
|
10 | minplyirredlem.1 | |
|
11 | minplyirredlem.2 | |
|
12 | minplyirredlem.3 | |
|
13 | minplyirredlem.4 | |
|
14 | minplyirredlem.5 | |
|
15 | minplyirredlem.6 | |
|
16 | eqid | |
|
17 | 16 | sdrgdrng | |
18 | 5 17 | syl | |
19 | 18 | drngringd | |
20 | eqid | |
|
21 | eqid | |
|
22 | 20 2 8 21 | deg1nn0cl | |
23 | 19 10 14 22 | syl3anc | |
24 | 23 | nn0red | |
25 | 20 2 8 21 | deg1nn0cl | |
26 | 19 11 15 25 | syl3anc | |
27 | 26 | nn0red | |
28 | eqid | |
|
29 | eqid | |
|
30 | fldsdrgfld | |
|
31 | 4 5 30 | syl2anc | |
32 | fldidom | |
|
33 | 31 32 | syl | |
34 | 33 | idomdomd | |
35 | eqid | |
|
36 | 20 2 8 21 28 35 | deg1ldgdomn | |
37 | 34 10 14 36 | syl3anc | |
38 | 20 2 28 21 29 8 19 10 14 37 11 15 | deg1mul2 | |
39 | eqid | |
|
40 | eqid | |
|
41 | eqid | |
|
42 | eqid | |
|
43 | 1 2 3 4 5 6 39 40 41 42 7 | minplyval | |
44 | 12 43 | eqtrd | |
45 | 44 | fveq2d | |
46 | 4 | fldcrngd | |
47 | sdrgsubrg | |
|
48 | 5 47 | syl | |
49 | 1 2 3 46 48 6 39 40 | ply1annidl | |
50 | fveq2 | |
|
51 | 50 | fveq1d | |
52 | 51 | eqeq1d | |
53 | 1 2 21 46 48 | evls1dm | |
54 | 10 53 | eleqtrrd | |
55 | 52 54 13 | elrabd | |
56 | 2 42 21 18 49 20 8 55 14 | ig1pmindeg | |
57 | 45 56 | eqbrtrd | |
58 | 38 57 | eqbrtrrd | |
59 | leaddle0 | |
|
60 | 59 | biimpa | |
61 | 24 27 58 60 | syl21anc | |
62 | eqid | |
|
63 | 20 2 21 62 | deg1le0 | |
64 | 63 | biimpa | |
65 | 19 11 61 64 | syl21anc | |
66 | eqid | |
|
67 | eqid | |
|
68 | 0nn0 | |
|
69 | eqid | |
|
70 | 69 21 2 66 | coe1fvalcl | |
71 | 11 68 70 | sylancl | |
72 | 20 2 67 21 8 19 11 61 | deg1le0eq0 | |
73 | 72 | necon3bid | |
74 | 15 73 | mpbid | |
75 | 2 62 66 67 31 71 74 | ply1asclunit | |
76 | 65 75 | eqeltrd | |