Metamath Proof Explorer


Theorem minplyirredlem

Description: Lemma for minplyirred . (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ply1annig1p.o O = E evalSub 1 F
ply1annig1p.p P = Poly 1 E 𝑠 F
ply1annig1p.b B = Base E
ply1annig1p.e φ E Field
ply1annig1p.f φ F SubDRing E
ply1annig1p.a φ A B
minplyirred.1 M = E minPoly F
minplyirred.2 Z = 0 P
minplyirred.3 φ M A Z
minplyirredlem.1 φ G Base P
minplyirredlem.2 φ H Base P
minplyirredlem.3 φ G P H = M A
minplyirredlem.4 φ O G A = 0 E
minplyirredlem.5 φ G Z
minplyirredlem.6 φ H Z
Assertion minplyirredlem φ H Unit P

Proof

Step Hyp Ref Expression
1 ply1annig1p.o O = E evalSub 1 F
2 ply1annig1p.p P = Poly 1 E 𝑠 F
3 ply1annig1p.b B = Base E
4 ply1annig1p.e φ E Field
5 ply1annig1p.f φ F SubDRing E
6 ply1annig1p.a φ A B
7 minplyirred.1 M = E minPoly F
8 minplyirred.2 Z = 0 P
9 minplyirred.3 φ M A Z
10 minplyirredlem.1 φ G Base P
11 minplyirredlem.2 φ H Base P
12 minplyirredlem.3 φ G P H = M A
13 minplyirredlem.4 φ O G A = 0 E
14 minplyirredlem.5 φ G Z
15 minplyirredlem.6 φ H Z
16 eqid E 𝑠 F = E 𝑠 F
17 16 sdrgdrng F SubDRing E E 𝑠 F DivRing
18 5 17 syl φ E 𝑠 F DivRing
19 18 drngringd φ E 𝑠 F Ring
20 eqid deg 1 E 𝑠 F = deg 1 E 𝑠 F
21 eqid Base P = Base P
22 20 2 8 21 deg1nn0cl E 𝑠 F Ring G Base P G Z deg 1 E 𝑠 F G 0
23 19 10 14 22 syl3anc φ deg 1 E 𝑠 F G 0
24 23 nn0red φ deg 1 E 𝑠 F G
25 20 2 8 21 deg1nn0cl E 𝑠 F Ring H Base P H Z deg 1 E 𝑠 F H 0
26 19 11 15 25 syl3anc φ deg 1 E 𝑠 F H 0
27 26 nn0red φ deg 1 E 𝑠 F H
28 eqid RLReg E 𝑠 F = RLReg E 𝑠 F
29 eqid P = P
30 fldsdrgfld E Field F SubDRing E E 𝑠 F Field
31 4 5 30 syl2anc φ E 𝑠 F Field
32 fldidom E 𝑠 F Field E 𝑠 F IDomn
33 31 32 syl φ E 𝑠 F IDomn
34 33 idomdomd φ E 𝑠 F Domn
35 eqid coe 1 G = coe 1 G
36 20 2 8 21 28 35 deg1ldgdomn E 𝑠 F Domn G Base P G Z coe 1 G deg 1 E 𝑠 F G RLReg E 𝑠 F
37 34 10 14 36 syl3anc φ coe 1 G deg 1 E 𝑠 F G RLReg E 𝑠 F
38 20 2 28 21 29 8 19 10 14 37 11 15 deg1mul2 φ deg 1 E 𝑠 F G P H = deg 1 E 𝑠 F G + deg 1 E 𝑠 F H
39 eqid 0 E = 0 E
40 eqid q dom O | O q A = 0 E = q dom O | O q A = 0 E
41 eqid RSpan P = RSpan P
42 eqid idlGen 1p E 𝑠 F = idlGen 1p E 𝑠 F
43 1 2 3 4 5 6 39 40 41 42 7 minplyval φ M A = idlGen 1p E 𝑠 F q dom O | O q A = 0 E
44 12 43 eqtrd φ G P H = idlGen 1p E 𝑠 F q dom O | O q A = 0 E
45 44 fveq2d φ deg 1 E 𝑠 F G P H = deg 1 E 𝑠 F idlGen 1p E 𝑠 F q dom O | O q A = 0 E
46 4 fldcrngd φ E CRing
47 sdrgsubrg F SubDRing E F SubRing E
48 5 47 syl φ F SubRing E
49 1 2 3 46 48 6 39 40 ply1annidl φ q dom O | O q A = 0 E LIdeal P
50 fveq2 q = G O q = O G
51 50 fveq1d q = G O q A = O G A
52 51 eqeq1d q = G O q A = 0 E O G A = 0 E
53 1 2 21 46 48 evls1dm φ dom O = Base P
54 10 53 eleqtrrd φ G dom O
55 52 54 13 elrabd φ G q dom O | O q A = 0 E
56 2 42 21 18 49 20 8 55 14 ig1pmindeg φ deg 1 E 𝑠 F idlGen 1p E 𝑠 F q dom O | O q A = 0 E deg 1 E 𝑠 F G
57 45 56 eqbrtrd φ deg 1 E 𝑠 F G P H deg 1 E 𝑠 F G
58 38 57 eqbrtrrd φ deg 1 E 𝑠 F G + deg 1 E 𝑠 F H deg 1 E 𝑠 F G
59 leaddle0 deg 1 E 𝑠 F G deg 1 E 𝑠 F H deg 1 E 𝑠 F G + deg 1 E 𝑠 F H deg 1 E 𝑠 F G deg 1 E 𝑠 F H 0
60 59 biimpa deg 1 E 𝑠 F G deg 1 E 𝑠 F H deg 1 E 𝑠 F G + deg 1 E 𝑠 F H deg 1 E 𝑠 F G deg 1 E 𝑠 F H 0
61 24 27 58 60 syl21anc φ deg 1 E 𝑠 F H 0
62 eqid algSc P = algSc P
63 20 2 21 62 deg1le0 E 𝑠 F Ring H Base P deg 1 E 𝑠 F H 0 H = algSc P coe 1 H 0
64 63 biimpa E 𝑠 F Ring H Base P deg 1 E 𝑠 F H 0 H = algSc P coe 1 H 0
65 19 11 61 64 syl21anc φ H = algSc P coe 1 H 0
66 eqid Base E 𝑠 F = Base E 𝑠 F
67 eqid 0 E 𝑠 F = 0 E 𝑠 F
68 0nn0 0 0
69 eqid coe 1 H = coe 1 H
70 69 21 2 66 coe1fvalcl H Base P 0 0 coe 1 H 0 Base E 𝑠 F
71 11 68 70 sylancl φ coe 1 H 0 Base E 𝑠 F
72 20 2 67 21 8 19 11 61 deg1le0eq0 φ H = Z coe 1 H 0 = 0 E 𝑠 F
73 72 necon3bid φ H Z coe 1 H 0 0 E 𝑠 F
74 15 73 mpbid φ coe 1 H 0 0 E 𝑠 F
75 2 62 66 67 31 71 74 ply1asclunit φ algSc P coe 1 H 0 Unit P
76 65 75 eqeltrd φ H Unit P