Metamath Proof Explorer


Theorem minplyirredlem

Description: Lemma for minplyirred . (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ply1annig1p.o O=EevalSub1F
ply1annig1p.p P=Poly1E𝑠F
ply1annig1p.b B=BaseE
ply1annig1p.e φEField
ply1annig1p.f φFSubDRingE
ply1annig1p.a φAB
minplyirred.1 No typesetting found for |- M = ( E minPoly F ) with typecode |-
minplyirred.2 Z=0P
minplyirred.3 φMAZ
minplyirredlem.1 φGBaseP
minplyirredlem.2 φHBaseP
minplyirredlem.3 φGPH=MA
minplyirredlem.4 φOGA=0E
minplyirredlem.5 φGZ
minplyirredlem.6 φHZ
Assertion minplyirredlem φHUnitP

Proof

Step Hyp Ref Expression
1 ply1annig1p.o O=EevalSub1F
2 ply1annig1p.p P=Poly1E𝑠F
3 ply1annig1p.b B=BaseE
4 ply1annig1p.e φEField
5 ply1annig1p.f φFSubDRingE
6 ply1annig1p.a φAB
7 minplyirred.1 Could not format M = ( E minPoly F ) : No typesetting found for |- M = ( E minPoly F ) with typecode |-
8 minplyirred.2 Z=0P
9 minplyirred.3 φMAZ
10 minplyirredlem.1 φGBaseP
11 minplyirredlem.2 φHBaseP
12 minplyirredlem.3 φGPH=MA
13 minplyirredlem.4 φOGA=0E
14 minplyirredlem.5 φGZ
15 minplyirredlem.6 φHZ
16 eqid E𝑠F=E𝑠F
17 16 sdrgdrng FSubDRingEE𝑠FDivRing
18 5 17 syl φE𝑠FDivRing
19 18 drngringd φE𝑠FRing
20 eqid deg1E𝑠F=deg1E𝑠F
21 eqid BaseP=BaseP
22 20 2 8 21 deg1nn0cl E𝑠FRingGBasePGZdeg1E𝑠FG0
23 19 10 14 22 syl3anc φdeg1E𝑠FG0
24 23 nn0red φdeg1E𝑠FG
25 20 2 8 21 deg1nn0cl E𝑠FRingHBasePHZdeg1E𝑠FH0
26 19 11 15 25 syl3anc φdeg1E𝑠FH0
27 26 nn0red φdeg1E𝑠FH
28 eqid RLRegE𝑠F=RLRegE𝑠F
29 eqid P=P
30 fldsdrgfld EFieldFSubDRingEE𝑠FField
31 4 5 30 syl2anc φE𝑠FField
32 fldidom E𝑠FFieldE𝑠FIDomn
33 31 32 syl φE𝑠FIDomn
34 33 idomdomd φE𝑠FDomn
35 eqid coe1G=coe1G
36 20 2 8 21 28 35 deg1ldgdomn E𝑠FDomnGBasePGZcoe1Gdeg1E𝑠FGRLRegE𝑠F
37 34 10 14 36 syl3anc φcoe1Gdeg1E𝑠FGRLRegE𝑠F
38 20 2 28 21 29 8 19 10 14 37 11 15 deg1mul2 φdeg1E𝑠FGPH=deg1E𝑠FG+deg1E𝑠FH
39 eqid 0E=0E
40 eqid qdomO|OqA=0E=qdomO|OqA=0E
41 eqid RSpanP=RSpanP
42 eqid idlGen1pE𝑠F=idlGen1pE𝑠F
43 1 2 3 4 5 6 39 40 41 42 7 minplyval φMA=idlGen1pE𝑠FqdomO|OqA=0E
44 12 43 eqtrd φGPH=idlGen1pE𝑠FqdomO|OqA=0E
45 44 fveq2d φdeg1E𝑠FGPH=deg1E𝑠FidlGen1pE𝑠FqdomO|OqA=0E
46 4 fldcrngd φECRing
47 sdrgsubrg FSubDRingEFSubRingE
48 5 47 syl φFSubRingE
49 1 2 3 46 48 6 39 40 ply1annidl φqdomO|OqA=0ELIdealP
50 fveq2 q=GOq=OG
51 50 fveq1d q=GOqA=OGA
52 51 eqeq1d q=GOqA=0EOGA=0E
53 1 2 21 46 48 evls1dm φdomO=BaseP
54 10 53 eleqtrrd φGdomO
55 52 54 13 elrabd φGqdomO|OqA=0E
56 2 42 21 18 49 20 8 55 14 ig1pmindeg φdeg1E𝑠FidlGen1pE𝑠FqdomO|OqA=0Edeg1E𝑠FG
57 45 56 eqbrtrd φdeg1E𝑠FGPHdeg1E𝑠FG
58 38 57 eqbrtrrd φdeg1E𝑠FG+deg1E𝑠FHdeg1E𝑠FG
59 leaddle0 deg1E𝑠FGdeg1E𝑠FHdeg1E𝑠FG+deg1E𝑠FHdeg1E𝑠FGdeg1E𝑠FH0
60 59 biimpa deg1E𝑠FGdeg1E𝑠FHdeg1E𝑠FG+deg1E𝑠FHdeg1E𝑠FGdeg1E𝑠FH0
61 24 27 58 60 syl21anc φdeg1E𝑠FH0
62 eqid algScP=algScP
63 20 2 21 62 deg1le0 E𝑠FRingHBasePdeg1E𝑠FH0H=algScPcoe1H0
64 63 biimpa E𝑠FRingHBasePdeg1E𝑠FH0H=algScPcoe1H0
65 19 11 61 64 syl21anc φH=algScPcoe1H0
66 eqid BaseE𝑠F=BaseE𝑠F
67 eqid 0E𝑠F=0E𝑠F
68 0nn0 00
69 eqid coe1H=coe1H
70 69 21 2 66 coe1fvalcl HBaseP00coe1H0BaseE𝑠F
71 11 68 70 sylancl φcoe1H0BaseE𝑠F
72 20 2 67 21 8 19 11 61 deg1le0eq0 φH=Zcoe1H0=0E𝑠F
73 72 necon3bid φHZcoe1H00E𝑠F
74 15 73 mpbid φcoe1H00E𝑠F
75 2 62 66 67 31 71 74 ply1asclunit φalgScPcoe1H0UnitP
76 65 75 eqeltrd φHUnitP