Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annig1p.o |
|
2 |
|
ply1annig1p.p |
|
3 |
|
ply1annig1p.b |
|
4 |
|
ply1annig1p.e |
|
5 |
|
ply1annig1p.f |
|
6 |
|
ply1annig1p.a |
|
7 |
|
minplyirred.1 |
|
8 |
|
minplyirred.2 |
|
9 |
|
minplyirred.3 |
|
10 |
|
minplyirredlem.1 |
|
11 |
|
minplyirredlem.2 |
|
12 |
|
minplyirredlem.3 |
|
13 |
|
minplyirredlem.4 |
|
14 |
|
minplyirredlem.5 |
|
15 |
|
minplyirredlem.6 |
|
16 |
|
eqid |
|
17 |
16
|
sdrgdrng |
|
18 |
5 17
|
syl |
|
19 |
18
|
drngringd |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
20 2 8 21
|
deg1nn0cl |
|
23 |
19 10 14 22
|
syl3anc |
|
24 |
23
|
nn0red |
|
25 |
20 2 8 21
|
deg1nn0cl |
|
26 |
19 11 15 25
|
syl3anc |
|
27 |
26
|
nn0red |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
|
fldsdrgfld |
|
31 |
4 5 30
|
syl2anc |
|
32 |
|
fldidom |
|
33 |
31 32
|
syl |
|
34 |
33
|
idomdomd |
|
35 |
|
eqid |
|
36 |
20 2 8 21 28 35
|
deg1ldgdomn |
|
37 |
34 10 14 36
|
syl3anc |
|
38 |
20 2 28 21 29 8 19 10 14 37 11 15
|
deg1mul2 |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
1 2 3 4 5 6 39 40 41 42 7
|
minplyval |
|
44 |
12 43
|
eqtrd |
|
45 |
44
|
fveq2d |
|
46 |
4
|
fldcrngd |
|
47 |
|
sdrgsubrg |
|
48 |
5 47
|
syl |
|
49 |
1 2 3 46 48 6 39 40
|
ply1annidl |
|
50 |
|
fveq2 |
|
51 |
50
|
fveq1d |
|
52 |
51
|
eqeq1d |
|
53 |
1 2 21 46 48
|
evls1dm |
|
54 |
10 53
|
eleqtrrd |
|
55 |
52 54 13
|
elrabd |
|
56 |
2 42 21 18 49 20 8 55 14
|
ig1pmindeg |
|
57 |
45 56
|
eqbrtrd |
|
58 |
38 57
|
eqbrtrrd |
|
59 |
|
leaddle0 |
|
60 |
59
|
biimpa |
|
61 |
24 27 58 60
|
syl21anc |
|
62 |
|
eqid |
|
63 |
20 2 21 62
|
deg1le0 |
|
64 |
63
|
biimpa |
|
65 |
19 11 61 64
|
syl21anc |
|
66 |
|
eqid |
|
67 |
|
eqid |
|
68 |
|
0nn0 |
|
69 |
|
eqid |
|
70 |
69 21 2 66
|
coe1fvalcl |
|
71 |
11 68 70
|
sylancl |
|
72 |
20 2 67 21 8 19 11 61
|
deg1le0eq0 |
|
73 |
72
|
necon3bid |
|
74 |
15 73
|
mpbid |
|
75 |
2 62 66 67 31 71 74
|
ply1asclunit |
|
76 |
65 75
|
eqeltrd |
|