Metamath Proof Explorer


Theorem minplyirred

Description: A nonzero minimal polynomial is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ply1annig1p.o O = E evalSub 1 F
ply1annig1p.p P = Poly 1 E 𝑠 F
ply1annig1p.b B = Base E
ply1annig1p.e φ E Field
ply1annig1p.f φ F SubDRing E
ply1annig1p.a φ A B
minplyirred.1 M = E minPoly F
minplyirred.2 Z = 0 P
minplyirred.3 φ M A Z
Assertion minplyirred φ M A Irred P

Proof

Step Hyp Ref Expression
1 ply1annig1p.o O = E evalSub 1 F
2 ply1annig1p.p P = Poly 1 E 𝑠 F
3 ply1annig1p.b B = Base E
4 ply1annig1p.e φ E Field
5 ply1annig1p.f φ F SubDRing E
6 ply1annig1p.a φ A B
7 minplyirred.1 M = E minPoly F
8 minplyirred.2 Z = 0 P
9 minplyirred.3 φ M A Z
10 eqid 0 E = 0 E
11 eqid q dom O | O q A = 0 E = q dom O | O q A = 0 E
12 eqid RSpan P = RSpan P
13 eqid idlGen 1p E 𝑠 F = idlGen 1p E 𝑠 F
14 1 2 3 4 5 6 10 11 12 13 7 minplycl φ M A Base P
15 1 2 3 4 5 6 10 11 12 13 7 minplyval φ M A = idlGen 1p E 𝑠 F q dom O | O q A = 0 E
16 eqid Base P = Base P
17 eqid E 𝑠 F = E 𝑠 F
18 17 sdrgdrng F SubDRing E E 𝑠 F DivRing
19 5 18 syl φ E 𝑠 F DivRing
20 4 fldcrngd φ E CRing
21 sdrgsubrg F SubDRing E F SubRing E
22 5 21 syl φ F SubRing E
23 1 2 3 20 22 6 10 11 ply1annidl φ q dom O | O q A = 0 E LIdeal P
24 4 flddrngd φ E DivRing
25 drngnzr E DivRing E NzRing
26 24 25 syl φ E NzRing
27 1 2 3 20 22 6 10 11 16 26 ply1annnr φ q dom O | O q A = 0 E Base P
28 2 13 16 19 23 27 ig1pnunit φ ¬ idlGen 1p E 𝑠 F q dom O | O q A = 0 E Unit P
29 15 28 eqneltrd φ ¬ M A Unit P
30 fldidom E Field E IDomn
31 4 30 syl φ E IDomn
32 31 idomdomd φ E Domn
33 32 ad3antrrr φ f Base P g Base P f P g = M A E Domn
34 20 ad3antrrr φ f Base P g Base P f P g = M A E CRing
35 22 ad3antrrr φ f Base P g Base P f P g = M A F SubRing E
36 6 ad3antrrr φ f Base P g Base P f P g = M A A B
37 simpllr φ f Base P g Base P f P g = M A f Base P
38 1 2 3 16 34 35 36 37 evls1fvcl φ f Base P g Base P f P g = M A O f A B
39 simplr φ f Base P g Base P f P g = M A g Base P
40 1 2 3 16 34 35 36 39 evls1fvcl φ f Base P g Base P f P g = M A O g A B
41 simpr φ f Base P g Base P f P g = M A f P g = M A
42 41 fveq2d φ f Base P g Base P f P g = M A O f P g = O M A
43 42 fveq1d φ f Base P g Base P f P g = M A O f P g A = O M A A
44 eqid P = P
45 eqid E = E
46 1 3 2 17 16 44 45 34 35 37 39 36 evls1muld φ f Base P g Base P f P g = M A O f P g A = O f A E O g A
47 eqid LIdeal P = LIdeal P
48 2 13 47 ig1pcl E 𝑠 F DivRing q dom O | O q A = 0 E LIdeal P idlGen 1p E 𝑠 F q dom O | O q A = 0 E q dom O | O q A = 0 E
49 19 23 48 syl2anc φ idlGen 1p E 𝑠 F q dom O | O q A = 0 E q dom O | O q A = 0 E
50 15 49 eqeltrd φ M A q dom O | O q A = 0 E
51 fveq2 q = M A O q = O M A
52 51 fveq1d q = M A O q A = O M A A
53 52 eqeq1d q = M A O q A = 0 E O M A A = 0 E
54 53 elrab M A q dom O | O q A = 0 E M A dom O O M A A = 0 E
55 50 54 sylib φ M A dom O O M A A = 0 E
56 55 simprd φ O M A A = 0 E
57 56 ad3antrrr φ f Base P g Base P f P g = M A O M A A = 0 E
58 43 46 57 3eqtr3d φ f Base P g Base P f P g = M A O f A E O g A = 0 E
59 3 45 10 domneq0 E Domn O f A B O g A B O f A E O g A = 0 E O f A = 0 E O g A = 0 E
60 59 biimpa E Domn O f A B O g A B O f A E O g A = 0 E O f A = 0 E O g A = 0 E
61 33 38 40 58 60 syl31anc φ f Base P g Base P f P g = M A O f A = 0 E O g A = 0 E
62 4 ad4antr φ f Base P g Base P f P g = M A O f A = 0 E E Field
63 5 ad4antr φ f Base P g Base P f P g = M A O f A = 0 E F SubDRing E
64 36 adantr φ f Base P g Base P f P g = M A O f A = 0 E A B
65 9 ad3antrrr φ f Base P g Base P f P g = M A M A Z
66 65 adantr φ f Base P g Base P f P g = M A O f A = 0 E M A Z
67 37 adantr φ f Base P g Base P f P g = M A O f A = 0 E f Base P
68 simpllr φ f Base P g Base P f P g = M A O f A = 0 E g Base P
69 simplr φ f Base P g Base P f P g = M A O f A = 0 E f P g = M A
70 simpr φ f Base P g Base P f P g = M A O f A = 0 E O f A = 0 E
71 fldsdrgfld E Field F SubDRing E E 𝑠 F Field
72 4 5 71 syl2anc φ E 𝑠 F Field
73 fldidom E 𝑠 F Field E 𝑠 F IDomn
74 72 73 syl φ E 𝑠 F IDomn
75 74 idomdomd φ E 𝑠 F Domn
76 2 ply1domn E 𝑠 F Domn P Domn
77 75 76 syl φ P Domn
78 77 ad3antrrr φ f Base P g Base P f P g = M A P Domn
79 41 65 eqnetrd φ f Base P g Base P f P g = M A f P g Z
80 16 44 8 domneq0 P Domn f Base P g Base P f P g = Z f = Z g = Z
81 80 necon3abid P Domn f Base P g Base P f P g Z ¬ f = Z g = Z
82 81 biimpa P Domn f Base P g Base P f P g Z ¬ f = Z g = Z
83 78 37 39 79 82 syl31anc φ f Base P g Base P f P g = M A ¬ f = Z g = Z
84 neanior f Z g Z ¬ f = Z g = Z
85 83 84 sylibr φ f Base P g Base P f P g = M A f Z g Z
86 85 simpld φ f Base P g Base P f P g = M A f Z
87 86 adantr φ f Base P g Base P f P g = M A O f A = 0 E f Z
88 85 simprd φ f Base P g Base P f P g = M A g Z
89 88 adantr φ f Base P g Base P f P g = M A O f A = 0 E g Z
90 1 2 3 62 63 64 7 8 66 67 68 69 70 87 89 minplyirredlem φ f Base P g Base P f P g = M A O f A = 0 E g Unit P
91 90 ex φ f Base P g Base P f P g = M A O f A = 0 E g Unit P
92 4 ad4antr φ f Base P g Base P f P g = M A O g A = 0 E E Field
93 5 ad4antr φ f Base P g Base P f P g = M A O g A = 0 E F SubDRing E
94 36 adantr φ f Base P g Base P f P g = M A O g A = 0 E A B
95 65 adantr φ f Base P g Base P f P g = M A O g A = 0 E M A Z
96 simpllr φ f Base P g Base P f P g = M A O g A = 0 E g Base P
97 37 adantr φ f Base P g Base P f P g = M A O g A = 0 E f Base P
98 72 fldcrngd φ E 𝑠 F CRing
99 2 ply1crng E 𝑠 F CRing P CRing
100 98 99 syl φ P CRing
101 100 ad4antr φ f Base P g Base P f P g = M A O g A = 0 E P CRing
102 16 44 crngcom P CRing g Base P f Base P g P f = f P g
103 101 96 97 102 syl3anc φ f Base P g Base P f P g = M A O g A = 0 E g P f = f P g
104 simplr φ f Base P g Base P f P g = M A O g A = 0 E f P g = M A
105 103 104 eqtrd φ f Base P g Base P f P g = M A O g A = 0 E g P f = M A
106 simpr φ f Base P g Base P f P g = M A O g A = 0 E O g A = 0 E
107 88 adantr φ f Base P g Base P f P g = M A O g A = 0 E g Z
108 86 adantr φ f Base P g Base P f P g = M A O g A = 0 E f Z
109 1 2 3 92 93 94 7 8 95 96 97 105 106 107 108 minplyirredlem φ f Base P g Base P f P g = M A O g A = 0 E f Unit P
110 109 ex φ f Base P g Base P f P g = M A O g A = 0 E f Unit P
111 91 110 orim12d φ f Base P g Base P f P g = M A O f A = 0 E O g A = 0 E g Unit P f Unit P
112 61 111 mpd φ f Base P g Base P f P g = M A g Unit P f Unit P
113 112 orcomd φ f Base P g Base P f P g = M A f Unit P g Unit P
114 113 ex φ f Base P g Base P f P g = M A f Unit P g Unit P
115 114 anasss φ f Base P g Base P f P g = M A f Unit P g Unit P
116 115 ralrimivva φ f Base P g Base P f P g = M A f Unit P g Unit P
117 eqid Unit P = Unit P
118 eqid Irred P = Irred P
119 16 117 118 44 isirred2 M A Irred P M A Base P ¬ M A Unit P f Base P g Base P f P g = M A f Unit P g Unit P
120 14 29 116 119 syl3anbrc φ M A Irred P