Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annig1p.o |
|
2 |
|
ply1annig1p.p |
|
3 |
|
ply1annig1p.b |
|
4 |
|
ply1annig1p.e |
|
5 |
|
ply1annig1p.f |
|
6 |
|
ply1annig1p.a |
|
7 |
|
minplyirred.1 |
Could not format M = ( E minPoly F ) : No typesetting found for |- M = ( E minPoly F ) with typecode |- |
8 |
|
minplyirred.2 |
|
9 |
|
minplyirred.3 |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
1 2 3 4 5 6 10 11 12 13 7
|
minplycl |
|
15 |
1 2 3 4 5 6 10 11 12 13 7
|
minplyval |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
17
|
sdrgdrng |
|
19 |
5 18
|
syl |
|
20 |
4
|
fldcrngd |
|
21 |
|
sdrgsubrg |
|
22 |
5 21
|
syl |
|
23 |
1 2 3 20 22 6 10 11
|
ply1annidl |
|
24 |
4
|
flddrngd |
|
25 |
|
drngnzr |
|
26 |
24 25
|
syl |
|
27 |
1 2 3 20 22 6 10 11 16 26
|
ply1annnr |
|
28 |
2 13 16 19 23 27
|
ig1pnunit |
|
29 |
15 28
|
eqneltrd |
|
30 |
|
fldidom |
|
31 |
4 30
|
syl |
|
32 |
31
|
idomdomd |
|
33 |
32
|
ad3antrrr |
|
34 |
20
|
ad3antrrr |
|
35 |
22
|
ad3antrrr |
|
36 |
6
|
ad3antrrr |
|
37 |
|
simpllr |
|
38 |
1 2 3 16 34 35 36 37
|
evls1fvcl |
|
39 |
|
simplr |
|
40 |
1 2 3 16 34 35 36 39
|
evls1fvcl |
|
41 |
|
simpr |
|
42 |
41
|
fveq2d |
|
43 |
42
|
fveq1d |
|
44 |
|
eqid |
|
45 |
|
eqid |
|
46 |
1 3 2 17 16 44 45 34 35 37 39 36
|
evls1muld |
|
47 |
|
eqid |
|
48 |
2 13 47
|
ig1pcl |
|
49 |
19 23 48
|
syl2anc |
|
50 |
15 49
|
eqeltrd |
|
51 |
|
fveq2 |
|
52 |
51
|
fveq1d |
|
53 |
52
|
eqeq1d |
|
54 |
53
|
elrab |
|
55 |
50 54
|
sylib |
|
56 |
55
|
simprd |
|
57 |
56
|
ad3antrrr |
|
58 |
43 46 57
|
3eqtr3d |
|
59 |
3 45 10
|
domneq0 |
|
60 |
59
|
biimpa |
|
61 |
33 38 40 58 60
|
syl31anc |
|
62 |
4
|
ad4antr |
|
63 |
5
|
ad4antr |
|
64 |
36
|
adantr |
|
65 |
9
|
ad3antrrr |
|
66 |
65
|
adantr |
|
67 |
37
|
adantr |
|
68 |
|
simpllr |
|
69 |
|
simplr |
|
70 |
|
simpr |
|
71 |
|
fldsdrgfld |
|
72 |
4 5 71
|
syl2anc |
|
73 |
|
fldidom |
|
74 |
72 73
|
syl |
|
75 |
74
|
idomdomd |
|
76 |
2
|
ply1domn |
|
77 |
75 76
|
syl |
|
78 |
77
|
ad3antrrr |
|
79 |
41 65
|
eqnetrd |
|
80 |
16 44 8
|
domneq0 |
|
81 |
80
|
necon3abid |
|
82 |
81
|
biimpa |
|
83 |
78 37 39 79 82
|
syl31anc |
|
84 |
|
neanior |
|
85 |
83 84
|
sylibr |
|
86 |
85
|
simpld |
|
87 |
86
|
adantr |
|
88 |
85
|
simprd |
|
89 |
88
|
adantr |
|
90 |
1 2 3 62 63 64 7 8 66 67 68 69 70 87 89
|
minplyirredlem |
|
91 |
90
|
ex |
|
92 |
4
|
ad4antr |
|
93 |
5
|
ad4antr |
|
94 |
36
|
adantr |
|
95 |
65
|
adantr |
|
96 |
|
simpllr |
|
97 |
37
|
adantr |
|
98 |
72
|
fldcrngd |
|
99 |
2
|
ply1crng |
|
100 |
98 99
|
syl |
|
101 |
100
|
ad4antr |
|
102 |
16 44
|
crngcom |
|
103 |
101 96 97 102
|
syl3anc |
|
104 |
|
simplr |
|
105 |
103 104
|
eqtrd |
|
106 |
|
simpr |
|
107 |
88
|
adantr |
|
108 |
86
|
adantr |
|
109 |
1 2 3 92 93 94 7 8 95 96 97 105 106 107 108
|
minplyirredlem |
|
110 |
109
|
ex |
|
111 |
91 110
|
orim12d |
|
112 |
61 111
|
mpd |
|
113 |
112
|
orcomd |
|
114 |
113
|
ex |
|
115 |
114
|
anasss |
|
116 |
115
|
ralrimivva |
|
117 |
|
eqid |
|
118 |
|
eqid |
|
119 |
16 117 118 44
|
isirred2 |
|
120 |
14 29 116 119
|
syl3anbrc |
|