Metamath Proof Explorer


Theorem minplyirred

Description: A nonzero minimal polynomial is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ply1annig1p.o O=EevalSub1F
ply1annig1p.p P=Poly1E𝑠F
ply1annig1p.b B=BaseE
ply1annig1p.e φEField
ply1annig1p.f φFSubDRingE
ply1annig1p.a φAB
minplyirred.1 No typesetting found for |- M = ( E minPoly F ) with typecode |-
minplyirred.2 Z=0P
minplyirred.3 φMAZ
Assertion minplyirred φMAIrredP

Proof

Step Hyp Ref Expression
1 ply1annig1p.o O=EevalSub1F
2 ply1annig1p.p P=Poly1E𝑠F
3 ply1annig1p.b B=BaseE
4 ply1annig1p.e φEField
5 ply1annig1p.f φFSubDRingE
6 ply1annig1p.a φAB
7 minplyirred.1 Could not format M = ( E minPoly F ) : No typesetting found for |- M = ( E minPoly F ) with typecode |-
8 minplyirred.2 Z=0P
9 minplyirred.3 φMAZ
10 eqid 0E=0E
11 eqid qdomO|OqA=0E=qdomO|OqA=0E
12 eqid RSpanP=RSpanP
13 eqid idlGen1pE𝑠F=idlGen1pE𝑠F
14 1 2 3 4 5 6 10 11 12 13 7 minplycl φMABaseP
15 1 2 3 4 5 6 10 11 12 13 7 minplyval φMA=idlGen1pE𝑠FqdomO|OqA=0E
16 eqid BaseP=BaseP
17 eqid E𝑠F=E𝑠F
18 17 sdrgdrng FSubDRingEE𝑠FDivRing
19 5 18 syl φE𝑠FDivRing
20 4 fldcrngd φECRing
21 sdrgsubrg FSubDRingEFSubRingE
22 5 21 syl φFSubRingE
23 1 2 3 20 22 6 10 11 ply1annidl φqdomO|OqA=0ELIdealP
24 4 flddrngd φEDivRing
25 drngnzr EDivRingENzRing
26 24 25 syl φENzRing
27 1 2 3 20 22 6 10 11 16 26 ply1annnr φqdomO|OqA=0EBaseP
28 2 13 16 19 23 27 ig1pnunit φ¬idlGen1pE𝑠FqdomO|OqA=0EUnitP
29 15 28 eqneltrd φ¬MAUnitP
30 fldidom EFieldEIDomn
31 4 30 syl φEIDomn
32 31 idomdomd φEDomn
33 32 ad3antrrr φfBasePgBasePfPg=MAEDomn
34 20 ad3antrrr φfBasePgBasePfPg=MAECRing
35 22 ad3antrrr φfBasePgBasePfPg=MAFSubRingE
36 6 ad3antrrr φfBasePgBasePfPg=MAAB
37 simpllr φfBasePgBasePfPg=MAfBaseP
38 1 2 3 16 34 35 36 37 evls1fvcl φfBasePgBasePfPg=MAOfAB
39 simplr φfBasePgBasePfPg=MAgBaseP
40 1 2 3 16 34 35 36 39 evls1fvcl φfBasePgBasePfPg=MAOgAB
41 simpr φfBasePgBasePfPg=MAfPg=MA
42 41 fveq2d φfBasePgBasePfPg=MAOfPg=OMA
43 42 fveq1d φfBasePgBasePfPg=MAOfPgA=OMAA
44 eqid P=P
45 eqid E=E
46 1 3 2 17 16 44 45 34 35 37 39 36 evls1muld φfBasePgBasePfPg=MAOfPgA=OfAEOgA
47 eqid LIdealP=LIdealP
48 2 13 47 ig1pcl E𝑠FDivRingqdomO|OqA=0ELIdealPidlGen1pE𝑠FqdomO|OqA=0EqdomO|OqA=0E
49 19 23 48 syl2anc φidlGen1pE𝑠FqdomO|OqA=0EqdomO|OqA=0E
50 15 49 eqeltrd φMAqdomO|OqA=0E
51 fveq2 q=MAOq=OMA
52 51 fveq1d q=MAOqA=OMAA
53 52 eqeq1d q=MAOqA=0EOMAA=0E
54 53 elrab MAqdomO|OqA=0EMAdomOOMAA=0E
55 50 54 sylib φMAdomOOMAA=0E
56 55 simprd φOMAA=0E
57 56 ad3antrrr φfBasePgBasePfPg=MAOMAA=0E
58 43 46 57 3eqtr3d φfBasePgBasePfPg=MAOfAEOgA=0E
59 3 45 10 domneq0 EDomnOfABOgABOfAEOgA=0EOfA=0EOgA=0E
60 59 biimpa EDomnOfABOgABOfAEOgA=0EOfA=0EOgA=0E
61 33 38 40 58 60 syl31anc φfBasePgBasePfPg=MAOfA=0EOgA=0E
62 4 ad4antr φfBasePgBasePfPg=MAOfA=0EEField
63 5 ad4antr φfBasePgBasePfPg=MAOfA=0EFSubDRingE
64 36 adantr φfBasePgBasePfPg=MAOfA=0EAB
65 9 ad3antrrr φfBasePgBasePfPg=MAMAZ
66 65 adantr φfBasePgBasePfPg=MAOfA=0EMAZ
67 37 adantr φfBasePgBasePfPg=MAOfA=0EfBaseP
68 simpllr φfBasePgBasePfPg=MAOfA=0EgBaseP
69 simplr φfBasePgBasePfPg=MAOfA=0EfPg=MA
70 simpr φfBasePgBasePfPg=MAOfA=0EOfA=0E
71 fldsdrgfld EFieldFSubDRingEE𝑠FField
72 4 5 71 syl2anc φE𝑠FField
73 fldidom E𝑠FFieldE𝑠FIDomn
74 72 73 syl φE𝑠FIDomn
75 74 idomdomd φE𝑠FDomn
76 2 ply1domn E𝑠FDomnPDomn
77 75 76 syl φPDomn
78 77 ad3antrrr φfBasePgBasePfPg=MAPDomn
79 41 65 eqnetrd φfBasePgBasePfPg=MAfPgZ
80 16 44 8 domneq0 PDomnfBasePgBasePfPg=Zf=Zg=Z
81 80 necon3abid PDomnfBasePgBasePfPgZ¬f=Zg=Z
82 81 biimpa PDomnfBasePgBasePfPgZ¬f=Zg=Z
83 78 37 39 79 82 syl31anc φfBasePgBasePfPg=MA¬f=Zg=Z
84 neanior fZgZ¬f=Zg=Z
85 83 84 sylibr φfBasePgBasePfPg=MAfZgZ
86 85 simpld φfBasePgBasePfPg=MAfZ
87 86 adantr φfBasePgBasePfPg=MAOfA=0EfZ
88 85 simprd φfBasePgBasePfPg=MAgZ
89 88 adantr φfBasePgBasePfPg=MAOfA=0EgZ
90 1 2 3 62 63 64 7 8 66 67 68 69 70 87 89 minplyirredlem φfBasePgBasePfPg=MAOfA=0EgUnitP
91 90 ex φfBasePgBasePfPg=MAOfA=0EgUnitP
92 4 ad4antr φfBasePgBasePfPg=MAOgA=0EEField
93 5 ad4antr φfBasePgBasePfPg=MAOgA=0EFSubDRingE
94 36 adantr φfBasePgBasePfPg=MAOgA=0EAB
95 65 adantr φfBasePgBasePfPg=MAOgA=0EMAZ
96 simpllr φfBasePgBasePfPg=MAOgA=0EgBaseP
97 37 adantr φfBasePgBasePfPg=MAOgA=0EfBaseP
98 72 fldcrngd φE𝑠FCRing
99 2 ply1crng E𝑠FCRingPCRing
100 98 99 syl φPCRing
101 100 ad4antr φfBasePgBasePfPg=MAOgA=0EPCRing
102 16 44 crngcom PCRinggBasePfBasePgPf=fPg
103 101 96 97 102 syl3anc φfBasePgBasePfPg=MAOgA=0EgPf=fPg
104 simplr φfBasePgBasePfPg=MAOgA=0EfPg=MA
105 103 104 eqtrd φfBasePgBasePfPg=MAOgA=0EgPf=MA
106 simpr φfBasePgBasePfPg=MAOgA=0EOgA=0E
107 88 adantr φfBasePgBasePfPg=MAOgA=0EgZ
108 86 adantr φfBasePgBasePfPg=MAOgA=0EfZ
109 1 2 3 92 93 94 7 8 95 96 97 105 106 107 108 minplyirredlem φfBasePgBasePfPg=MAOgA=0EfUnitP
110 109 ex φfBasePgBasePfPg=MAOgA=0EfUnitP
111 91 110 orim12d φfBasePgBasePfPg=MAOfA=0EOgA=0EgUnitPfUnitP
112 61 111 mpd φfBasePgBasePfPg=MAgUnitPfUnitP
113 112 orcomd φfBasePgBasePfPg=MAfUnitPgUnitP
114 113 ex φfBasePgBasePfPg=MAfUnitPgUnitP
115 114 anasss φfBasePgBasePfPg=MAfUnitPgUnitP
116 115 ralrimivva φfBasePgBasePfPg=MAfUnitPgUnitP
117 eqid UnitP=UnitP
118 eqid IrredP=IrredP
119 16 117 118 44 isirred2 MAIrredPMABaseP¬MAUnitPfBasePgBasePfPg=MAfUnitPgUnitP
120 14 29 116 119 syl3anbrc φMAIrredP