| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1annig1p.o |
|
| 2 |
|
ply1annig1p.p |
|
| 3 |
|
ply1annig1p.b |
|
| 4 |
|
ply1annig1p.e |
|
| 5 |
|
ply1annig1p.f |
|
| 6 |
|
ply1annig1p.a |
|
| 7 |
|
minplyirred.1 |
|
| 8 |
|
minplyirred.2 |
|
| 9 |
|
minplyirred.3 |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
1 2 3 4 5 6 10 11 12 13 7
|
minplycl |
|
| 15 |
1 2 3 4 5 6 10 11 12 13 7
|
minplyval |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
17
|
sdrgdrng |
|
| 19 |
5 18
|
syl |
|
| 20 |
4
|
fldcrngd |
|
| 21 |
|
sdrgsubrg |
|
| 22 |
5 21
|
syl |
|
| 23 |
1 2 3 20 22 6 10 11
|
ply1annidl |
|
| 24 |
4
|
flddrngd |
|
| 25 |
|
drngnzr |
|
| 26 |
24 25
|
syl |
|
| 27 |
1 2 3 20 22 6 10 11 16 26
|
ply1annnr |
|
| 28 |
2 13 16 19 23 27
|
ig1pnunit |
|
| 29 |
15 28
|
eqneltrd |
|
| 30 |
|
fldidom |
|
| 31 |
4 30
|
syl |
|
| 32 |
31
|
idomdomd |
|
| 33 |
32
|
ad3antrrr |
|
| 34 |
20
|
ad3antrrr |
|
| 35 |
22
|
ad3antrrr |
|
| 36 |
6
|
ad3antrrr |
|
| 37 |
|
simpllr |
|
| 38 |
1 2 3 16 34 35 36 37
|
evls1fvcl |
|
| 39 |
|
simplr |
|
| 40 |
1 2 3 16 34 35 36 39
|
evls1fvcl |
|
| 41 |
|
simpr |
|
| 42 |
41
|
fveq2d |
|
| 43 |
42
|
fveq1d |
|
| 44 |
|
eqid |
|
| 45 |
|
eqid |
|
| 46 |
1 3 2 17 16 44 45 34 35 37 39 36
|
evls1muld |
|
| 47 |
|
eqid |
|
| 48 |
2 13 47
|
ig1pcl |
|
| 49 |
19 23 48
|
syl2anc |
|
| 50 |
15 49
|
eqeltrd |
|
| 51 |
|
fveq2 |
|
| 52 |
51
|
fveq1d |
|
| 53 |
52
|
eqeq1d |
|
| 54 |
53
|
elrab |
|
| 55 |
50 54
|
sylib |
|
| 56 |
55
|
simprd |
|
| 57 |
56
|
ad3antrrr |
|
| 58 |
43 46 57
|
3eqtr3d |
|
| 59 |
3 45 10
|
domneq0 |
|
| 60 |
59
|
biimpa |
|
| 61 |
33 38 40 58 60
|
syl31anc |
|
| 62 |
4
|
ad4antr |
|
| 63 |
5
|
ad4antr |
|
| 64 |
36
|
adantr |
|
| 65 |
9
|
ad3antrrr |
|
| 66 |
65
|
adantr |
|
| 67 |
37
|
adantr |
|
| 68 |
|
simpllr |
|
| 69 |
|
simplr |
|
| 70 |
|
simpr |
|
| 71 |
|
fldsdrgfld |
|
| 72 |
4 5 71
|
syl2anc |
|
| 73 |
|
fldidom |
|
| 74 |
72 73
|
syl |
|
| 75 |
74
|
idomdomd |
|
| 76 |
2
|
ply1domn |
|
| 77 |
75 76
|
syl |
|
| 78 |
77
|
ad3antrrr |
|
| 79 |
41 65
|
eqnetrd |
|
| 80 |
16 44 8
|
domneq0 |
|
| 81 |
80
|
necon3abid |
|
| 82 |
81
|
biimpa |
|
| 83 |
78 37 39 79 82
|
syl31anc |
|
| 84 |
|
neanior |
|
| 85 |
83 84
|
sylibr |
|
| 86 |
85
|
simpld |
|
| 87 |
86
|
adantr |
|
| 88 |
85
|
simprd |
|
| 89 |
88
|
adantr |
|
| 90 |
1 2 3 62 63 64 7 8 66 67 68 69 70 87 89
|
minplyirredlem |
|
| 91 |
90
|
ex |
|
| 92 |
4
|
ad4antr |
|
| 93 |
5
|
ad4antr |
|
| 94 |
36
|
adantr |
|
| 95 |
65
|
adantr |
|
| 96 |
|
simpllr |
|
| 97 |
37
|
adantr |
|
| 98 |
72
|
fldcrngd |
|
| 99 |
2
|
ply1crng |
|
| 100 |
98 99
|
syl |
|
| 101 |
100
|
ad4antr |
|
| 102 |
16 44
|
crngcom |
|
| 103 |
101 96 97 102
|
syl3anc |
|
| 104 |
|
simplr |
|
| 105 |
103 104
|
eqtrd |
|
| 106 |
|
simpr |
|
| 107 |
88
|
adantr |
|
| 108 |
86
|
adantr |
|
| 109 |
1 2 3 92 93 94 7 8 95 96 97 105 106 107 108
|
minplyirredlem |
|
| 110 |
109
|
ex |
|
| 111 |
91 110
|
orim12d |
|
| 112 |
61 111
|
mpd |
|
| 113 |
112
|
orcomd |
|
| 114 |
113
|
ex |
|
| 115 |
114
|
anasss |
|
| 116 |
115
|
ralrimivva |
|
| 117 |
|
eqid |
|
| 118 |
|
eqid |
|
| 119 |
16 117 118 44
|
isirred2 |
|
| 120 |
14 29 116 119
|
syl3anbrc |
|