| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irngnminplynz.z |
|
| 2 |
|
irngnminplynz.e |
|
| 3 |
|
irngnminplynz.f |
|
| 4 |
|
irngnminplynz.m |
|
| 5 |
|
irngnminplynz.a |
|
| 6 |
|
sdrgsubrg |
|
| 7 |
3 6
|
syl |
|
| 8 |
|
eqid |
|
| 9 |
8
|
subrgring |
|
| 10 |
7 9
|
syl |
|
| 11 |
|
eqid |
|
| 12 |
11
|
ply1ring |
|
| 13 |
10 12
|
syl |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
2
|
fldcrngd |
|
| 17 |
|
eqid |
|
| 18 |
14 8 15 17 16 7
|
irngssv |
|
| 19 |
18 5
|
sseldd |
|
| 20 |
|
eqid |
|
| 21 |
14 11 15 16 7 19 17 20
|
ply1annidl |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
22 23
|
lidlss |
|
| 25 |
21 24
|
syl |
|
| 26 |
8
|
sdrgdrng |
|
| 27 |
3 26
|
syl |
|
| 28 |
|
eqid |
|
| 29 |
11 28 23
|
ig1pcl |
|
| 30 |
27 21 29
|
syl2anc |
|
| 31 |
25 30
|
sseldd |
|
| 32 |
|
eqid |
|
| 33 |
14 11 15 2 3 19 17 20 32 28
|
ply1annig1p |
|
| 34 |
|
fveq2 |
|
| 35 |
34
|
fveq1d |
|
| 36 |
35
|
eqeq1d |
|
| 37 |
|
simplr |
|
| 38 |
37
|
eldifad |
|
| 39 |
16
|
ad2antrr |
|
| 40 |
7
|
ad2antrr |
|
| 41 |
14 11 22 16 7
|
evls1dm |
|
| 42 |
41
|
ad2antrr |
|
| 43 |
38 42
|
eleqtrd |
|
| 44 |
14 11 22 39 40 15 43
|
evls1fvf |
|
| 45 |
44
|
ffnd |
|
| 46 |
|
elpreima |
|
| 47 |
46
|
simplbda |
|
| 48 |
45 47
|
sylancom |
|
| 49 |
|
elsni |
|
| 50 |
48 49
|
syl |
|
| 51 |
36 38 50
|
elrabd |
|
| 52 |
|
eldifsni |
|
| 53 |
37 52
|
syl |
|
| 54 |
|
eqid |
|
| 55 |
54 8 11 22 7 1
|
ressply10g |
|
| 56 |
55
|
ad2antrr |
|
| 57 |
53 56
|
neeqtrd |
|
| 58 |
|
nelsn |
|
| 59 |
57 58
|
syl |
|
| 60 |
|
nelne1 |
|
| 61 |
51 59 60
|
syl2anc |
|
| 62 |
14 1 17 2 3
|
irngnzply1 |
|
| 63 |
5 62
|
eleqtrd |
|
| 64 |
|
eliun |
|
| 65 |
63 64
|
sylib |
|
| 66 |
61 65
|
r19.29a |
|
| 67 |
33 66
|
eqnetrrd |
|
| 68 |
|
eqid |
|
| 69 |
22 68 32
|
pidlnzb |
|
| 70 |
69
|
biimpar |
|
| 71 |
13 31 67 70
|
syl21anc |
|
| 72 |
14 11 15 2 3 19 17 20 32 28 4
|
minplyval |
|
| 73 |
71 72 55
|
3netr4d |
|