Metamath Proof Explorer


Theorem irngnminplynz

Description: Integral elements have nonzero minimal polynomials. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses irngnminplynz.z Z = 0 Poly 1 E
irngnminplynz.e φ E Field
irngnminplynz.f φ F SubDRing E
irngnminplynz.m M = E minPoly F
irngnminplynz.a φ A E IntgRing F
Assertion irngnminplynz φ M A Z

Proof

Step Hyp Ref Expression
1 irngnminplynz.z Z = 0 Poly 1 E
2 irngnminplynz.e φ E Field
3 irngnminplynz.f φ F SubDRing E
4 irngnminplynz.m M = E minPoly F
5 irngnminplynz.a φ A E IntgRing F
6 sdrgsubrg F SubDRing E F SubRing E
7 3 6 syl φ F SubRing E
8 eqid E 𝑠 F = E 𝑠 F
9 8 subrgring F SubRing E E 𝑠 F Ring
10 7 9 syl φ E 𝑠 F Ring
11 eqid Poly 1 E 𝑠 F = Poly 1 E 𝑠 F
12 11 ply1ring E 𝑠 F Ring Poly 1 E 𝑠 F Ring
13 10 12 syl φ Poly 1 E 𝑠 F Ring
14 eqid E evalSub 1 F = E evalSub 1 F
15 eqid Base E = Base E
16 2 fldcrngd φ E CRing
17 eqid 0 E = 0 E
18 14 8 15 17 16 7 irngssv φ E IntgRing F Base E
19 18 5 sseldd φ A Base E
20 eqid q dom E evalSub 1 F | E evalSub 1 F q A = 0 E = q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
21 14 11 15 16 7 19 17 20 ply1annidl φ q dom E evalSub 1 F | E evalSub 1 F q A = 0 E LIdeal Poly 1 E 𝑠 F
22 eqid Base Poly 1 E 𝑠 F = Base Poly 1 E 𝑠 F
23 eqid LIdeal Poly 1 E 𝑠 F = LIdeal Poly 1 E 𝑠 F
24 22 23 lidlss q dom E evalSub 1 F | E evalSub 1 F q A = 0 E LIdeal Poly 1 E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E Base Poly 1 E 𝑠 F
25 21 24 syl φ q dom E evalSub 1 F | E evalSub 1 F q A = 0 E Base Poly 1 E 𝑠 F
26 8 sdrgdrng F SubDRing E E 𝑠 F DivRing
27 3 26 syl φ E 𝑠 F DivRing
28 eqid idlGen 1p E 𝑠 F = idlGen 1p E 𝑠 F
29 11 28 23 ig1pcl E 𝑠 F DivRing q dom E evalSub 1 F | E evalSub 1 F q A = 0 E LIdeal Poly 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
30 27 21 29 syl2anc φ idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
31 25 30 sseldd φ idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E Base Poly 1 E 𝑠 F
32 eqid RSpan Poly 1 E 𝑠 F = RSpan Poly 1 E 𝑠 F
33 14 11 15 2 3 19 17 20 32 28 ply1annig1p φ q dom E evalSub 1 F | E evalSub 1 F q A = 0 E = RSpan Poly 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
34 fveq2 q = p E evalSub 1 F q = E evalSub 1 F p
35 34 fveq1d q = p E evalSub 1 F q A = E evalSub 1 F p A
36 35 eqeq1d q = p E evalSub 1 F q A = 0 E E evalSub 1 F p A = 0 E
37 simplr φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E p dom E evalSub 1 F Z
38 37 eldifad φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E p dom E evalSub 1 F
39 16 ad2antrr φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E E CRing
40 7 ad2antrr φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E F SubRing E
41 14 11 22 16 7 evls1dm φ dom E evalSub 1 F = Base Poly 1 E 𝑠 F
42 41 ad2antrr φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E dom E evalSub 1 F = Base Poly 1 E 𝑠 F
43 38 42 eleqtrd φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E p Base Poly 1 E 𝑠 F
44 14 11 22 39 40 15 43 evls1fvf φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E E evalSub 1 F p : Base E Base E
45 44 ffnd φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E E evalSub 1 F p Fn Base E
46 elpreima E evalSub 1 F p Fn Base E A E evalSub 1 F p -1 0 E A Base E E evalSub 1 F p A 0 E
47 46 simplbda E evalSub 1 F p Fn Base E A E evalSub 1 F p -1 0 E E evalSub 1 F p A 0 E
48 45 47 sylancom φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E E evalSub 1 F p A 0 E
49 elsni E evalSub 1 F p A 0 E E evalSub 1 F p A = 0 E
50 48 49 syl φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E E evalSub 1 F p A = 0 E
51 36 38 50 elrabd φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E p q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
52 eldifsni p dom E evalSub 1 F Z p Z
53 37 52 syl φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E p Z
54 eqid Poly 1 E = Poly 1 E
55 54 8 11 22 7 1 ressply10g φ Z = 0 Poly 1 E 𝑠 F
56 55 ad2antrr φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E Z = 0 Poly 1 E 𝑠 F
57 53 56 neeqtrd φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E p 0 Poly 1 E 𝑠 F
58 nelsn p 0 Poly 1 E 𝑠 F ¬ p 0 Poly 1 E 𝑠 F
59 57 58 syl φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E ¬ p 0 Poly 1 E 𝑠 F
60 nelne1 p q dom E evalSub 1 F | E evalSub 1 F q A = 0 E ¬ p 0 Poly 1 E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F
61 51 59 60 syl2anc φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F
62 14 1 17 2 3 irngnzply1 φ E IntgRing F = p dom E evalSub 1 F Z E evalSub 1 F p -1 0 E
63 5 62 eleqtrd φ A p dom E evalSub 1 F Z E evalSub 1 F p -1 0 E
64 eliun A p dom E evalSub 1 F Z E evalSub 1 F p -1 0 E p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E
65 63 64 sylib φ p dom E evalSub 1 F Z A E evalSub 1 F p -1 0 E
66 61 65 r19.29a φ q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F
67 33 66 eqnetrrd φ RSpan Poly 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F
68 eqid 0 Poly 1 E 𝑠 F = 0 Poly 1 E 𝑠 F
69 22 68 32 pidlnzb Poly 1 E 𝑠 F Ring idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E Base Poly 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F RSpan Poly 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F
70 69 biimpar Poly 1 E 𝑠 F Ring idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E Base Poly 1 E 𝑠 F RSpan Poly 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F
71 13 31 67 70 syl21anc φ idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F
72 14 11 15 2 3 19 17 20 32 28 4 minplyval φ M A = idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
73 71 72 55 3netr4d φ M A Z