Metamath Proof Explorer


Theorem minplym1p

Description: A minimal polynomial is monic. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses irngnminplynz.z Z = 0 Poly 1 E
irngnminplynz.e φ E Field
irngnminplynz.f φ F SubDRing E
irngnminplynz.m M = E minPoly F
irngnminplynz.a φ A E IntgRing F
minplym1p.1 U = Monic 1p E 𝑠 F
Assertion minplym1p φ M A U

Proof

Step Hyp Ref Expression
1 irngnminplynz.z Z = 0 Poly 1 E
2 irngnminplynz.e φ E Field
3 irngnminplynz.f φ F SubDRing E
4 irngnminplynz.m M = E minPoly F
5 irngnminplynz.a φ A E IntgRing F
6 minplym1p.1 U = Monic 1p E 𝑠 F
7 eqid E evalSub 1 F = E evalSub 1 F
8 eqid Poly 1 E 𝑠 F = Poly 1 E 𝑠 F
9 eqid Base E = Base E
10 eqid E 𝑠 F = E 𝑠 F
11 eqid 0 E = 0 E
12 2 fldcrngd φ E CRing
13 sdrgsubrg F SubDRing E F SubRing E
14 3 13 syl φ F SubRing E
15 7 10 9 11 12 14 irngssv φ E IntgRing F Base E
16 15 5 sseldd φ A Base E
17 eqid q dom E evalSub 1 F | E evalSub 1 F q A = 0 E = q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
18 eqid RSpan Poly 1 E 𝑠 F = RSpan Poly 1 E 𝑠 F
19 eqid idlGen 1p E 𝑠 F = idlGen 1p E 𝑠 F
20 7 8 9 2 3 16 11 17 18 19 4 minplyval φ M A = idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
21 10 sdrgdrng F SubDRing E E 𝑠 F DivRing
22 3 21 syl φ E 𝑠 F DivRing
23 7 8 9 12 14 16 11 17 ply1annidl φ q dom E evalSub 1 F | E evalSub 1 F q A = 0 E LIdeal Poly 1 E 𝑠 F
24 20 sneqd φ M A = idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
25 24 fveq2d φ RSpan Poly 1 E 𝑠 F M A = RSpan Poly 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
26 7 8 9 2 3 16 11 17 18 19 ply1annig1p φ q dom E evalSub 1 F | E evalSub 1 F q A = 0 E = RSpan Poly 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
27 25 26 eqtr4d φ RSpan Poly 1 E 𝑠 F M A = q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
28 22 drngringd φ E 𝑠 F Ring
29 8 ply1ring E 𝑠 F Ring Poly 1 E 𝑠 F Ring
30 28 29 syl φ Poly 1 E 𝑠 F Ring
31 7 8 9 2 3 16 11 17 18 19 4 minplycl φ M A Base Poly 1 E 𝑠 F
32 1 2 3 4 5 irngnminplynz φ M A Z
33 eqid Poly 1 E = Poly 1 E
34 eqid Base Poly 1 E 𝑠 F = Base Poly 1 E 𝑠 F
35 33 10 8 34 14 1 ressply10g φ Z = 0 Poly 1 E 𝑠 F
36 32 35 neeqtrd φ M A 0 Poly 1 E 𝑠 F
37 eqid 0 Poly 1 E 𝑠 F = 0 Poly 1 E 𝑠 F
38 34 37 18 pidlnz Poly 1 E 𝑠 F Ring M A Base Poly 1 E 𝑠 F M A 0 Poly 1 E 𝑠 F RSpan Poly 1 E 𝑠 F M A 0 Poly 1 E 𝑠 F
39 30 31 36 38 syl3anc φ RSpan Poly 1 E 𝑠 F M A 0 Poly 1 E 𝑠 F
40 27 39 eqnetrrd φ q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F
41 eqid LIdeal Poly 1 E 𝑠 F = LIdeal Poly 1 E 𝑠 F
42 eqid deg 1 E 𝑠 F = deg 1 E 𝑠 F
43 8 19 37 41 42 6 ig1pval3 E 𝑠 F DivRing q dom E evalSub 1 F | E evalSub 1 F q A = 0 E LIdeal Poly 1 E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E q dom E evalSub 1 F | E evalSub 1 F q A = 0 E idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E U deg 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E = inf deg 1 E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F <
44 22 23 40 43 syl3anc φ idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E q dom E evalSub 1 F | E evalSub 1 F q A = 0 E idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E U deg 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E = inf deg 1 E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F <
45 44 simp2d φ idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E U
46 20 45 eqeltrd φ M A U