| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irngnminplynz.z |
|
| 2 |
|
irngnminplynz.e |
|
| 3 |
|
irngnminplynz.f |
|
| 4 |
|
irngnminplynz.m |
|
| 5 |
|
irngnminplynz.a |
|
| 6 |
|
minplym1p.1 |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
2
|
fldcrngd |
|
| 13 |
|
sdrgsubrg |
|
| 14 |
3 13
|
syl |
|
| 15 |
7 10 9 11 12 14
|
irngssv |
|
| 16 |
15 5
|
sseldd |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
7 8 9 2 3 16 11 17 18 19 4
|
minplyval |
|
| 21 |
10
|
sdrgdrng |
|
| 22 |
3 21
|
syl |
|
| 23 |
7 8 9 12 14 16 11 17
|
ply1annidl |
|
| 24 |
20
|
sneqd |
|
| 25 |
24
|
fveq2d |
|
| 26 |
7 8 9 2 3 16 11 17 18 19
|
ply1annig1p |
|
| 27 |
25 26
|
eqtr4d |
|
| 28 |
22
|
drngringd |
|
| 29 |
8
|
ply1ring |
|
| 30 |
28 29
|
syl |
|
| 31 |
7 8 9 2 3 16 11 17 18 19 4
|
minplycl |
|
| 32 |
1 2 3 4 5
|
irngnminplynz |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
33 10 8 34 14 1
|
ressply10g |
|
| 36 |
32 35
|
neeqtrd |
|
| 37 |
|
eqid |
|
| 38 |
34 37 18
|
pidlnz |
|
| 39 |
30 31 36 38
|
syl3anc |
|
| 40 |
27 39
|
eqnetrrd |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
8 19 37 41 42 6
|
ig1pval3 |
|
| 44 |
22 23 40 43
|
syl3anc |
|
| 45 |
44
|
simp2d |
|
| 46 |
20 45
|
eqeltrd |
|