Step |
Hyp |
Ref |
Expression |
1 |
|
irngnminplynz.z |
|
2 |
|
irngnminplynz.e |
|
3 |
|
irngnminplynz.f |
|
4 |
|
irngnminplynz.m |
|
5 |
|
irngnminplynz.a |
|
6 |
|
minplym1p.1 |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
2
|
fldcrngd |
|
13 |
|
sdrgsubrg |
|
14 |
3 13
|
syl |
|
15 |
7 10 9 11 12 14
|
irngssv |
|
16 |
15 5
|
sseldd |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
7 8 9 2 3 16 11 17 18 19 4
|
minplyval |
|
21 |
10
|
sdrgdrng |
|
22 |
3 21
|
syl |
|
23 |
7 8 9 12 14 16 11 17
|
ply1annidl |
|
24 |
20
|
sneqd |
|
25 |
24
|
fveq2d |
|
26 |
7 8 9 2 3 16 11 17 18 19
|
ply1annig1p |
|
27 |
25 26
|
eqtr4d |
|
28 |
22
|
drngringd |
|
29 |
8
|
ply1ring |
|
30 |
28 29
|
syl |
|
31 |
7 8 9 2 3 16 11 17 18 19 4
|
minplycl |
|
32 |
1 2 3 4 5
|
irngnminplynz |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
33 10 8 34 14 1
|
ressply10g |
|
36 |
32 35
|
neeqtrd |
|
37 |
|
eqid |
|
38 |
34 37 18
|
pidlnz |
|
39 |
30 31 36 38
|
syl3anc |
|
40 |
27 39
|
eqnetrrd |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
8 19 37 41 42 6
|
ig1pval3 |
|
44 |
22 23 40 43
|
syl3anc |
|
45 |
44
|
simp2d |
|
46 |
20 45
|
eqeltrd |
|