Metamath Proof Explorer


Theorem pidlnz

Description: A principal ideal generated by a nonzero element is not the zero ideal. (Contributed by Thierry Arnoux, 11-Apr-2024)

Ref Expression
Hypotheses pidlnz.1 B = Base R
pidlnz.2 0 ˙ = 0 R
pidlnz.3 K = RSpan R
Assertion pidlnz R Ring X B X 0 ˙ K X 0 ˙

Proof

Step Hyp Ref Expression
1 pidlnz.1 B = Base R
2 pidlnz.2 0 ˙ = 0 R
3 pidlnz.3 K = RSpan R
4 simpl1 R Ring X B X 0 ˙ K X = 0 ˙ R Ring
5 simpl2 R Ring X B X 0 ˙ K X = 0 ˙ X B
6 1 3 rspsnid R Ring X B X K X
7 4 5 6 syl2anc R Ring X B X 0 ˙ K X = 0 ˙ X K X
8 simpr R Ring X B X 0 ˙ K X = 0 ˙ K X = 0 ˙
9 7 8 eleqtrd R Ring X B X 0 ˙ K X = 0 ˙ X 0 ˙
10 elsni X 0 ˙ X = 0 ˙
11 9 10 syl R Ring X B X 0 ˙ K X = 0 ˙ X = 0 ˙
12 simpl3 R Ring X B X 0 ˙ K X = 0 ˙ X 0 ˙
13 12 neneqd R Ring X B X 0 ˙ K X = 0 ˙ ¬ X = 0 ˙
14 11 13 pm2.65da R Ring X B X 0 ˙ ¬ K X = 0 ˙
15 14 neqned R Ring X B X 0 ˙ K X 0 ˙