| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pidlnz.1 |
|- B = ( Base ` R ) |
| 2 |
|
pidlnz.2 |
|- .0. = ( 0g ` R ) |
| 3 |
|
pidlnz.3 |
|- K = ( RSpan ` R ) |
| 4 |
|
simpl1 |
|- ( ( ( R e. Ring /\ X e. B /\ X =/= .0. ) /\ ( K ` { X } ) = { .0. } ) -> R e. Ring ) |
| 5 |
|
simpl2 |
|- ( ( ( R e. Ring /\ X e. B /\ X =/= .0. ) /\ ( K ` { X } ) = { .0. } ) -> X e. B ) |
| 6 |
1 3
|
rspsnid |
|- ( ( R e. Ring /\ X e. B ) -> X e. ( K ` { X } ) ) |
| 7 |
4 5 6
|
syl2anc |
|- ( ( ( R e. Ring /\ X e. B /\ X =/= .0. ) /\ ( K ` { X } ) = { .0. } ) -> X e. ( K ` { X } ) ) |
| 8 |
|
simpr |
|- ( ( ( R e. Ring /\ X e. B /\ X =/= .0. ) /\ ( K ` { X } ) = { .0. } ) -> ( K ` { X } ) = { .0. } ) |
| 9 |
7 8
|
eleqtrd |
|- ( ( ( R e. Ring /\ X e. B /\ X =/= .0. ) /\ ( K ` { X } ) = { .0. } ) -> X e. { .0. } ) |
| 10 |
|
elsni |
|- ( X e. { .0. } -> X = .0. ) |
| 11 |
9 10
|
syl |
|- ( ( ( R e. Ring /\ X e. B /\ X =/= .0. ) /\ ( K ` { X } ) = { .0. } ) -> X = .0. ) |
| 12 |
|
simpl3 |
|- ( ( ( R e. Ring /\ X e. B /\ X =/= .0. ) /\ ( K ` { X } ) = { .0. } ) -> X =/= .0. ) |
| 13 |
12
|
neneqd |
|- ( ( ( R e. Ring /\ X e. B /\ X =/= .0. ) /\ ( K ` { X } ) = { .0. } ) -> -. X = .0. ) |
| 14 |
11 13
|
pm2.65da |
|- ( ( R e. Ring /\ X e. B /\ X =/= .0. ) -> -. ( K ` { X } ) = { .0. } ) |
| 15 |
14
|
neqned |
|- ( ( R e. Ring /\ X e. B /\ X =/= .0. ) -> ( K ` { X } ) =/= { .0. } ) |