| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsrspss.b |
|- B = ( Base ` R ) |
| 2 |
|
dvdsrspss.k |
|- K = ( RSpan ` R ) |
| 3 |
|
dvdsrspss.d |
|- .|| = ( ||r ` R ) |
| 4 |
|
dvdsrspss.x |
|- ( ph -> X e. B ) |
| 5 |
|
dvdsrspss.y |
|- ( ph -> Y e. B ) |
| 6 |
|
dvdsruassoi.1 |
|- U = ( Unit ` R ) |
| 7 |
|
dvdsruassoi.2 |
|- .x. = ( .r ` R ) |
| 8 |
|
dvdsruassoi.r |
|- ( ph -> R e. Ring ) |
| 9 |
|
dvdsruassoi.3 |
|- ( ph -> V e. U ) |
| 10 |
|
dvdsruassoi.4 |
|- ( ph -> ( V .x. X ) = Y ) |
| 11 |
1 6
|
unitss |
|- U C_ B |
| 12 |
11 9
|
sselid |
|- ( ph -> V e. B ) |
| 13 |
|
oveq1 |
|- ( t = V -> ( t .x. X ) = ( V .x. X ) ) |
| 14 |
13
|
eqeq1d |
|- ( t = V -> ( ( t .x. X ) = Y <-> ( V .x. X ) = Y ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ t = V ) -> ( ( t .x. X ) = Y <-> ( V .x. X ) = Y ) ) |
| 16 |
12 15 10
|
rspcedvd |
|- ( ph -> E. t e. B ( t .x. X ) = Y ) |
| 17 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
| 18 |
6 17 1
|
ringinvcl |
|- ( ( R e. Ring /\ V e. U ) -> ( ( invr ` R ) ` V ) e. B ) |
| 19 |
8 9 18
|
syl2anc |
|- ( ph -> ( ( invr ` R ) ` V ) e. B ) |
| 20 |
|
oveq1 |
|- ( s = ( ( invr ` R ) ` V ) -> ( s .x. Y ) = ( ( ( invr ` R ) ` V ) .x. Y ) ) |
| 21 |
20
|
eqeq1d |
|- ( s = ( ( invr ` R ) ` V ) -> ( ( s .x. Y ) = X <-> ( ( ( invr ` R ) ` V ) .x. Y ) = X ) ) |
| 22 |
21
|
adantl |
|- ( ( ph /\ s = ( ( invr ` R ) ` V ) ) -> ( ( s .x. Y ) = X <-> ( ( ( invr ` R ) ` V ) .x. Y ) = X ) ) |
| 23 |
1 7 8 19 12 4
|
ringassd |
|- ( ph -> ( ( ( ( invr ` R ) ` V ) .x. V ) .x. X ) = ( ( ( invr ` R ) ` V ) .x. ( V .x. X ) ) ) |
| 24 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 25 |
6 17 7 24
|
unitlinv |
|- ( ( R e. Ring /\ V e. U ) -> ( ( ( invr ` R ) ` V ) .x. V ) = ( 1r ` R ) ) |
| 26 |
8 9 25
|
syl2anc |
|- ( ph -> ( ( ( invr ` R ) ` V ) .x. V ) = ( 1r ` R ) ) |
| 27 |
26
|
oveq1d |
|- ( ph -> ( ( ( ( invr ` R ) ` V ) .x. V ) .x. X ) = ( ( 1r ` R ) .x. X ) ) |
| 28 |
1 7 24 8 4
|
ringlidmd |
|- ( ph -> ( ( 1r ` R ) .x. X ) = X ) |
| 29 |
27 28
|
eqtrd |
|- ( ph -> ( ( ( ( invr ` R ) ` V ) .x. V ) .x. X ) = X ) |
| 30 |
10
|
oveq2d |
|- ( ph -> ( ( ( invr ` R ) ` V ) .x. ( V .x. X ) ) = ( ( ( invr ` R ) ` V ) .x. Y ) ) |
| 31 |
23 29 30
|
3eqtr3rd |
|- ( ph -> ( ( ( invr ` R ) ` V ) .x. Y ) = X ) |
| 32 |
19 22 31
|
rspcedvd |
|- ( ph -> E. s e. B ( s .x. Y ) = X ) |
| 33 |
1 3 7
|
dvdsr |
|- ( X .|| Y <-> ( X e. B /\ E. t e. B ( t .x. X ) = Y ) ) |
| 34 |
4
|
biantrurd |
|- ( ph -> ( E. t e. B ( t .x. X ) = Y <-> ( X e. B /\ E. t e. B ( t .x. X ) = Y ) ) ) |
| 35 |
33 34
|
bitr4id |
|- ( ph -> ( X .|| Y <-> E. t e. B ( t .x. X ) = Y ) ) |
| 36 |
1 3 7
|
dvdsr |
|- ( Y .|| X <-> ( Y e. B /\ E. s e. B ( s .x. Y ) = X ) ) |
| 37 |
5
|
biantrurd |
|- ( ph -> ( E. s e. B ( s .x. Y ) = X <-> ( Y e. B /\ E. s e. B ( s .x. Y ) = X ) ) ) |
| 38 |
36 37
|
bitr4id |
|- ( ph -> ( Y .|| X <-> E. s e. B ( s .x. Y ) = X ) ) |
| 39 |
35 38
|
anbi12d |
|- ( ph -> ( ( X .|| Y /\ Y .|| X ) <-> ( E. t e. B ( t .x. X ) = Y /\ E. s e. B ( s .x. Y ) = X ) ) ) |
| 40 |
16 32 39
|
mpbir2and |
|- ( ph -> ( X .|| Y /\ Y .|| X ) ) |