| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsrspss.b |
|- B = ( Base ` R ) |
| 2 |
|
dvdsrspss.k |
|- K = ( RSpan ` R ) |
| 3 |
|
dvdsrspss.d |
|- .|| = ( ||r ` R ) |
| 4 |
|
dvdsrspss.x |
|- ( ph -> X e. B ) |
| 5 |
|
dvdsrspss.y |
|- ( ph -> Y e. B ) |
| 6 |
|
dvdsruassoi.1 |
|- U = ( Unit ` R ) |
| 7 |
|
dvdsruassoi.2 |
|- .x. = ( .r ` R ) |
| 8 |
|
dvdsruasso.r |
|- ( ph -> R e. IDomn ) |
| 9 |
1 3 7
|
dvdsr |
|- ( X .|| Y <-> ( X e. B /\ E. t e. B ( t .x. X ) = Y ) ) |
| 10 |
4
|
biantrurd |
|- ( ph -> ( E. t e. B ( t .x. X ) = Y <-> ( X e. B /\ E. t e. B ( t .x. X ) = Y ) ) ) |
| 11 |
9 10
|
bitr4id |
|- ( ph -> ( X .|| Y <-> E. t e. B ( t .x. X ) = Y ) ) |
| 12 |
1 3 7
|
dvdsr |
|- ( Y .|| X <-> ( Y e. B /\ E. s e. B ( s .x. Y ) = X ) ) |
| 13 |
5
|
biantrurd |
|- ( ph -> ( E. s e. B ( s .x. Y ) = X <-> ( Y e. B /\ E. s e. B ( s .x. Y ) = X ) ) ) |
| 14 |
12 13
|
bitr4id |
|- ( ph -> ( Y .|| X <-> E. s e. B ( s .x. Y ) = X ) ) |
| 15 |
11 14
|
anbi12d |
|- ( ph -> ( ( X .|| Y /\ Y .|| X ) <-> ( E. t e. B ( t .x. X ) = Y /\ E. s e. B ( s .x. Y ) = X ) ) ) |
| 16 |
8
|
idomringd |
|- ( ph -> R e. Ring ) |
| 17 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 18 |
6 17
|
1unit |
|- ( R e. Ring -> ( 1r ` R ) e. U ) |
| 19 |
16 18
|
syl |
|- ( ph -> ( 1r ` R ) e. U ) |
| 20 |
19
|
ad5antr |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X = ( 0g ` R ) ) -> ( 1r ` R ) e. U ) |
| 21 |
|
oveq1 |
|- ( u = ( 1r ` R ) -> ( u .x. X ) = ( ( 1r ` R ) .x. X ) ) |
| 22 |
21
|
eqeq1d |
|- ( u = ( 1r ` R ) -> ( ( u .x. X ) = Y <-> ( ( 1r ` R ) .x. X ) = Y ) ) |
| 23 |
22
|
adantl |
|- ( ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X = ( 0g ` R ) ) /\ u = ( 1r ` R ) ) -> ( ( u .x. X ) = Y <-> ( ( 1r ` R ) .x. X ) = Y ) ) |
| 24 |
16
|
ad5antr |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X = ( 0g ` R ) ) -> R e. Ring ) |
| 25 |
4
|
ad5antr |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X = ( 0g ` R ) ) -> X e. B ) |
| 26 |
1 7 17 24 25
|
ringlidmd |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X = ( 0g ` R ) ) -> ( ( 1r ` R ) .x. X ) = X ) |
| 27 |
|
simpr |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X = ( 0g ` R ) ) -> X = ( 0g ` R ) ) |
| 28 |
27
|
oveq2d |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X = ( 0g ` R ) ) -> ( t .x. X ) = ( t .x. ( 0g ` R ) ) ) |
| 29 |
|
simplr |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X = ( 0g ` R ) ) -> ( t .x. X ) = Y ) |
| 30 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X = ( 0g ` R ) ) -> t e. B ) |
| 31 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 32 |
1 7 31
|
ringrz |
|- ( ( R e. Ring /\ t e. B ) -> ( t .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
| 33 |
24 30 32
|
syl2anc |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X = ( 0g ` R ) ) -> ( t .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
| 34 |
28 29 33
|
3eqtr3rd |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X = ( 0g ` R ) ) -> ( 0g ` R ) = Y ) |
| 35 |
26 27 34
|
3eqtrd |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X = ( 0g ` R ) ) -> ( ( 1r ` R ) .x. X ) = Y ) |
| 36 |
20 23 35
|
rspcedvd |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X = ( 0g ` R ) ) -> E. u e. U ( u .x. X ) = Y ) |
| 37 |
|
isidom |
|- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
| 38 |
8 37
|
sylib |
|- ( ph -> ( R e. CRing /\ R e. Domn ) ) |
| 39 |
38
|
simpld |
|- ( ph -> R e. CRing ) |
| 40 |
39
|
ad5antr |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> R e. CRing ) |
| 41 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> s e. B ) |
| 42 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> t e. B ) |
| 43 |
16
|
ad5antr |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> R e. Ring ) |
| 44 |
1 7 43 41 42
|
ringcld |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> ( s .x. t ) e. B ) |
| 45 |
1 17
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 46 |
43 45
|
syl |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> ( 1r ` R ) e. B ) |
| 47 |
4
|
ad5antr |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> X e. B ) |
| 48 |
|
simpr |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> X =/= ( 0g ` R ) ) |
| 49 |
|
eldifsn |
|- ( X e. ( B \ { ( 0g ` R ) } ) <-> ( X e. B /\ X =/= ( 0g ` R ) ) ) |
| 50 |
47 48 49
|
sylanbrc |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> X e. ( B \ { ( 0g ` R ) } ) ) |
| 51 |
8
|
ad5antr |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> R e. IDomn ) |
| 52 |
|
simplr |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> ( t .x. X ) = Y ) |
| 53 |
52
|
oveq2d |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> ( s .x. ( t .x. X ) ) = ( s .x. Y ) ) |
| 54 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> ( s .x. Y ) = X ) |
| 55 |
53 54
|
eqtrd |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> ( s .x. ( t .x. X ) ) = X ) |
| 56 |
1 7 43 41 42 47
|
ringassd |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> ( ( s .x. t ) .x. X ) = ( s .x. ( t .x. X ) ) ) |
| 57 |
1 7 17 43 47
|
ringlidmd |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> ( ( 1r ` R ) .x. X ) = X ) |
| 58 |
55 56 57
|
3eqtr4d |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> ( ( s .x. t ) .x. X ) = ( ( 1r ` R ) .x. X ) ) |
| 59 |
1 31 7 44 46 50 51 58
|
idomrcan |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> ( s .x. t ) = ( 1r ` R ) ) |
| 60 |
43 18
|
syl |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> ( 1r ` R ) e. U ) |
| 61 |
59 60
|
eqeltrd |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> ( s .x. t ) e. U ) |
| 62 |
6 7 1
|
unitmulclb |
|- ( ( R e. CRing /\ s e. B /\ t e. B ) -> ( ( s .x. t ) e. U <-> ( s e. U /\ t e. U ) ) ) |
| 63 |
62
|
simplbda |
|- ( ( ( R e. CRing /\ s e. B /\ t e. B ) /\ ( s .x. t ) e. U ) -> t e. U ) |
| 64 |
40 41 42 61 63
|
syl31anc |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> t e. U ) |
| 65 |
|
oveq1 |
|- ( u = t -> ( u .x. X ) = ( t .x. X ) ) |
| 66 |
65
|
eqeq1d |
|- ( u = t -> ( ( u .x. X ) = Y <-> ( t .x. X ) = Y ) ) |
| 67 |
66
|
adantl |
|- ( ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) /\ u = t ) -> ( ( u .x. X ) = Y <-> ( t .x. X ) = Y ) ) |
| 68 |
64 67 52
|
rspcedvd |
|- ( ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) /\ X =/= ( 0g ` R ) ) -> E. u e. U ( u .x. X ) = Y ) |
| 69 |
36 68
|
pm2.61dane |
|- ( ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ t e. B ) /\ ( t .x. X ) = Y ) -> E. u e. U ( u .x. X ) = Y ) |
| 70 |
69
|
r19.29an |
|- ( ( ( ( ph /\ s e. B ) /\ ( s .x. Y ) = X ) /\ E. t e. B ( t .x. X ) = Y ) -> E. u e. U ( u .x. X ) = Y ) |
| 71 |
70
|
an32s |
|- ( ( ( ( ph /\ s e. B ) /\ E. t e. B ( t .x. X ) = Y ) /\ ( s .x. Y ) = X ) -> E. u e. U ( u .x. X ) = Y ) |
| 72 |
71
|
ex |
|- ( ( ( ph /\ s e. B ) /\ E. t e. B ( t .x. X ) = Y ) -> ( ( s .x. Y ) = X -> E. u e. U ( u .x. X ) = Y ) ) |
| 73 |
72
|
an32s |
|- ( ( ( ph /\ E. t e. B ( t .x. X ) = Y ) /\ s e. B ) -> ( ( s .x. Y ) = X -> E. u e. U ( u .x. X ) = Y ) ) |
| 74 |
73
|
imp |
|- ( ( ( ( ph /\ E. t e. B ( t .x. X ) = Y ) /\ s e. B ) /\ ( s .x. Y ) = X ) -> E. u e. U ( u .x. X ) = Y ) |
| 75 |
74
|
r19.29an |
|- ( ( ( ph /\ E. t e. B ( t .x. X ) = Y ) /\ E. s e. B ( s .x. Y ) = X ) -> E. u e. U ( u .x. X ) = Y ) |
| 76 |
75
|
anasss |
|- ( ( ph /\ ( E. t e. B ( t .x. X ) = Y /\ E. s e. B ( s .x. Y ) = X ) ) -> E. u e. U ( u .x. X ) = Y ) |
| 77 |
15 76
|
sylbida |
|- ( ( ph /\ ( X .|| Y /\ Y .|| X ) ) -> E. u e. U ( u .x. X ) = Y ) |
| 78 |
4
|
ad2antrr |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> X e. B ) |
| 79 |
5
|
ad2antrr |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> Y e. B ) |
| 80 |
16
|
ad2antrr |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> R e. Ring ) |
| 81 |
|
simplr |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> u e. U ) |
| 82 |
|
simpr |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( u .x. X ) = Y ) |
| 83 |
1 2 3 78 79 6 7 80 81 82
|
dvdsruassoi |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( X .|| Y /\ Y .|| X ) ) |
| 84 |
83
|
r19.29an |
|- ( ( ph /\ E. u e. U ( u .x. X ) = Y ) -> ( X .|| Y /\ Y .|| X ) ) |
| 85 |
77 84
|
impbida |
|- ( ph -> ( ( X .|| Y /\ Y .|| X ) <-> E. u e. U ( u .x. X ) = Y ) ) |