| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsrspss.b |
|- B = ( Base ` R ) |
| 2 |
|
dvdsrspss.k |
|- K = ( RSpan ` R ) |
| 3 |
|
dvdsrspss.d |
|- .|| = ( ||r ` R ) |
| 4 |
|
dvdsrspss.x |
|- ( ph -> X e. B ) |
| 5 |
|
dvdsrspss.y |
|- ( ph -> Y e. B ) |
| 6 |
|
dvdsruassoi.1 |
|- U = ( Unit ` R ) |
| 7 |
|
dvdsruassoi.2 |
|- .x. = ( .r ` R ) |
| 8 |
|
dvdsruasso.r |
|- ( ph -> R e. IDomn ) |
| 9 |
|
dvdsruasso2.1 |
|- .1. = ( 1r ` R ) |
| 10 |
1 2 3 4 5 6 7 8
|
dvdsruasso |
|- ( ph -> ( ( X .|| Y /\ Y .|| X ) <-> E. u e. U ( u .x. X ) = Y ) ) |
| 11 |
|
oveq1 |
|- ( v = ( ( invr ` R ) ` u ) -> ( v .x. Y ) = ( ( ( invr ` R ) ` u ) .x. Y ) ) |
| 12 |
11
|
eqeq1d |
|- ( v = ( ( invr ` R ) ` u ) -> ( ( v .x. Y ) = X <-> ( ( ( invr ` R ) ` u ) .x. Y ) = X ) ) |
| 13 |
|
oveq2 |
|- ( v = ( ( invr ` R ) ` u ) -> ( u .x. v ) = ( u .x. ( ( invr ` R ) ` u ) ) ) |
| 14 |
13
|
eqeq1d |
|- ( v = ( ( invr ` R ) ` u ) -> ( ( u .x. v ) = .1. <-> ( u .x. ( ( invr ` R ) ` u ) ) = .1. ) ) |
| 15 |
12 14
|
3anbi23d |
|- ( v = ( ( invr ` R ) ` u ) -> ( ( ( u .x. X ) = Y /\ ( v .x. Y ) = X /\ ( u .x. v ) = .1. ) <-> ( ( u .x. X ) = Y /\ ( ( ( invr ` R ) ` u ) .x. Y ) = X /\ ( u .x. ( ( invr ` R ) ` u ) ) = .1. ) ) ) |
| 16 |
8
|
idomringd |
|- ( ph -> R e. Ring ) |
| 17 |
16
|
ad2antrr |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> R e. Ring ) |
| 18 |
|
simplr |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> u e. U ) |
| 19 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
| 20 |
6 19
|
unitinvcl |
|- ( ( R e. Ring /\ u e. U ) -> ( ( invr ` R ) ` u ) e. U ) |
| 21 |
17 18 20
|
syl2anc |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( ( invr ` R ) ` u ) e. U ) |
| 22 |
|
simpr |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( u .x. X ) = Y ) |
| 23 |
22
|
oveq2d |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( ( ( invr ` R ) ` u ) .x. ( u .x. X ) ) = ( ( ( invr ` R ) ` u ) .x. Y ) ) |
| 24 |
8
|
idomcringd |
|- ( ph -> R e. CRing ) |
| 25 |
24
|
ad2antrr |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> R e. CRing ) |
| 26 |
1 6
|
unitcl |
|- ( ( ( invr ` R ) ` u ) e. U -> ( ( invr ` R ) ` u ) e. B ) |
| 27 |
21 26
|
syl |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( ( invr ` R ) ` u ) e. B ) |
| 28 |
1 6
|
unitcl |
|- ( u e. U -> u e. B ) |
| 29 |
18 28
|
syl |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> u e. B ) |
| 30 |
1 7 25 27 29
|
crngcomd |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( ( ( invr ` R ) ` u ) .x. u ) = ( u .x. ( ( invr ` R ) ` u ) ) ) |
| 31 |
6 19 7 9
|
unitrinv |
|- ( ( R e. Ring /\ u e. U ) -> ( u .x. ( ( invr ` R ) ` u ) ) = .1. ) |
| 32 |
17 18 31
|
syl2anc |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( u .x. ( ( invr ` R ) ` u ) ) = .1. ) |
| 33 |
30 32
|
eqtrd |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( ( ( invr ` R ) ` u ) .x. u ) = .1. ) |
| 34 |
33
|
oveq1d |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( ( ( ( invr ` R ) ` u ) .x. u ) .x. X ) = ( .1. .x. X ) ) |
| 35 |
4
|
ad2antrr |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> X e. B ) |
| 36 |
1 7 17 27 29 35
|
ringassd |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( ( ( ( invr ` R ) ` u ) .x. u ) .x. X ) = ( ( ( invr ` R ) ` u ) .x. ( u .x. X ) ) ) |
| 37 |
1 7 9 17 35
|
ringlidmd |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( .1. .x. X ) = X ) |
| 38 |
34 36 37
|
3eqtr3d |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( ( ( invr ` R ) ` u ) .x. ( u .x. X ) ) = X ) |
| 39 |
23 38
|
eqtr3d |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( ( ( invr ` R ) ` u ) .x. Y ) = X ) |
| 40 |
22 39 32
|
3jca |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> ( ( u .x. X ) = Y /\ ( ( ( invr ` R ) ` u ) .x. Y ) = X /\ ( u .x. ( ( invr ` R ) ` u ) ) = .1. ) ) |
| 41 |
15 21 40
|
rspcedvdw |
|- ( ( ( ph /\ u e. U ) /\ ( u .x. X ) = Y ) -> E. v e. U ( ( u .x. X ) = Y /\ ( v .x. Y ) = X /\ ( u .x. v ) = .1. ) ) |
| 42 |
|
simpr1 |
|- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ ( ( u .x. X ) = Y /\ ( v .x. Y ) = X /\ ( u .x. v ) = .1. ) ) -> ( u .x. X ) = Y ) |
| 43 |
42
|
r19.29an |
|- ( ( ( ph /\ u e. U ) /\ E. v e. U ( ( u .x. X ) = Y /\ ( v .x. Y ) = X /\ ( u .x. v ) = .1. ) ) -> ( u .x. X ) = Y ) |
| 44 |
41 43
|
impbida |
|- ( ( ph /\ u e. U ) -> ( ( u .x. X ) = Y <-> E. v e. U ( ( u .x. X ) = Y /\ ( v .x. Y ) = X /\ ( u .x. v ) = .1. ) ) ) |
| 45 |
44
|
rexbidva |
|- ( ph -> ( E. u e. U ( u .x. X ) = Y <-> E. u e. U E. v e. U ( ( u .x. X ) = Y /\ ( v .x. Y ) = X /\ ( u .x. v ) = .1. ) ) ) |
| 46 |
10 45
|
bitrd |
|- ( ph -> ( ( X .|| Y /\ Y .|| X ) <-> E. u e. U E. v e. U ( ( u .x. X ) = Y /\ ( v .x. Y ) = X /\ ( u .x. v ) = .1. ) ) ) |