| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsrspss.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
dvdsrspss.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
| 3 |
|
dvdsrspss.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
| 4 |
|
dvdsrspss.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
dvdsrspss.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
dvdsruassoi.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 7 |
|
dvdsruassoi.2 |
⊢ · = ( .r ‘ 𝑅 ) |
| 8 |
|
dvdsruasso.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 9 |
|
dvdsruasso2.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 10 |
1 2 3 4 5 6 7 8
|
dvdsruasso |
⊢ ( 𝜑 → ( ( 𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋 ) ↔ ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑣 = ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) → ( 𝑣 · 𝑌 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) · 𝑌 ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( 𝑣 = ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) → ( ( 𝑣 · 𝑌 ) = 𝑋 ↔ ( ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) · 𝑌 ) = 𝑋 ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑣 = ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) → ( 𝑢 · 𝑣 ) = ( 𝑢 · ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) ) ) |
| 14 |
13
|
eqeq1d |
⊢ ( 𝑣 = ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) → ( ( 𝑢 · 𝑣 ) = 1 ↔ ( 𝑢 · ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) ) = 1 ) ) |
| 15 |
12 14
|
3anbi23d |
⊢ ( 𝑣 = ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) → ( ( ( 𝑢 · 𝑋 ) = 𝑌 ∧ ( 𝑣 · 𝑌 ) = 𝑋 ∧ ( 𝑢 · 𝑣 ) = 1 ) ↔ ( ( 𝑢 · 𝑋 ) = 𝑌 ∧ ( ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) · 𝑌 ) = 𝑋 ∧ ( 𝑢 · ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) ) = 1 ) ) ) |
| 16 |
8
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 17 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → 𝑅 ∈ Ring ) |
| 18 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → 𝑢 ∈ 𝑈 ) |
| 19 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
| 20 |
6 19
|
unitinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑢 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) ∈ 𝑈 ) |
| 21 |
17 18 20
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) ∈ 𝑈 ) |
| 22 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( 𝑢 · 𝑋 ) = 𝑌 ) |
| 23 |
22
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) · ( 𝑢 · 𝑋 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) · 𝑌 ) ) |
| 24 |
8
|
idomcringd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → 𝑅 ∈ CRing ) |
| 26 |
1 6
|
unitcl |
⊢ ( ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) ∈ 𝑈 → ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) ∈ 𝐵 ) |
| 27 |
21 26
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) ∈ 𝐵 ) |
| 28 |
1 6
|
unitcl |
⊢ ( 𝑢 ∈ 𝑈 → 𝑢 ∈ 𝐵 ) |
| 29 |
18 28
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → 𝑢 ∈ 𝐵 ) |
| 30 |
1 7 25 27 29
|
crngcomd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) · 𝑢 ) = ( 𝑢 · ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) ) ) |
| 31 |
6 19 7 9
|
unitrinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 · ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) ) = 1 ) |
| 32 |
17 18 31
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( 𝑢 · ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) ) = 1 ) |
| 33 |
30 32
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) · 𝑢 ) = 1 ) |
| 34 |
33
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) · 𝑢 ) · 𝑋 ) = ( 1 · 𝑋 ) ) |
| 35 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → 𝑋 ∈ 𝐵 ) |
| 36 |
1 7 17 27 29 35
|
ringassd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) · 𝑢 ) · 𝑋 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) · ( 𝑢 · 𝑋 ) ) ) |
| 37 |
1 7 9 17 35
|
ringlidmd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 38 |
34 36 37
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) · ( 𝑢 · 𝑋 ) ) = 𝑋 ) |
| 39 |
23 38
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) · 𝑌 ) = 𝑋 ) |
| 40 |
22 39 32
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( ( 𝑢 · 𝑋 ) = 𝑌 ∧ ( ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) · 𝑌 ) = 𝑋 ∧ ( 𝑢 · ( ( invr ‘ 𝑅 ) ‘ 𝑢 ) ) = 1 ) ) |
| 41 |
15 21 40
|
rspcedvdw |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ∃ 𝑣 ∈ 𝑈 ( ( 𝑢 · 𝑋 ) = 𝑌 ∧ ( 𝑣 · 𝑌 ) = 𝑋 ∧ ( 𝑢 · 𝑣 ) = 1 ) ) |
| 42 |
|
simpr1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( ( 𝑢 · 𝑋 ) = 𝑌 ∧ ( 𝑣 · 𝑌 ) = 𝑋 ∧ ( 𝑢 · 𝑣 ) = 1 ) ) → ( 𝑢 · 𝑋 ) = 𝑌 ) |
| 43 |
42
|
r19.29an |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ∃ 𝑣 ∈ 𝑈 ( ( 𝑢 · 𝑋 ) = 𝑌 ∧ ( 𝑣 · 𝑌 ) = 𝑋 ∧ ( 𝑢 · 𝑣 ) = 1 ) ) → ( 𝑢 · 𝑋 ) = 𝑌 ) |
| 44 |
41 43
|
impbida |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( 𝑢 · 𝑋 ) = 𝑌 ↔ ∃ 𝑣 ∈ 𝑈 ( ( 𝑢 · 𝑋 ) = 𝑌 ∧ ( 𝑣 · 𝑌 ) = 𝑋 ∧ ( 𝑢 · 𝑣 ) = 1 ) ) ) |
| 45 |
44
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ↔ ∃ 𝑢 ∈ 𝑈 ∃ 𝑣 ∈ 𝑈 ( ( 𝑢 · 𝑋 ) = 𝑌 ∧ ( 𝑣 · 𝑌 ) = 𝑋 ∧ ( 𝑢 · 𝑣 ) = 1 ) ) ) |
| 46 |
10 45
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋 ) ↔ ∃ 𝑢 ∈ 𝑈 ∃ 𝑣 ∈ 𝑈 ( ( 𝑢 · 𝑋 ) = 𝑌 ∧ ( 𝑣 · 𝑌 ) = 𝑋 ∧ ( 𝑢 · 𝑣 ) = 1 ) ) ) |