| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsrspss.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
dvdsrspss.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
| 3 |
|
dvdsrspss.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
| 4 |
|
dvdsrspss.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
dvdsrspss.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
dvdsrspss.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 8 |
1 3 7
|
dvdsr |
⊢ ( 𝑋 ∥ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ) |
| 9 |
4
|
biantrurd |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ) ) |
| 10 |
8 9
|
bitr4id |
⊢ ( 𝜑 → ( 𝑋 ∥ 𝑌 ↔ ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ) |
| 11 |
1 7 2
|
elrspsn |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ∃ 𝑡 ∈ 𝐵 𝑌 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) ) ) |
| 12 |
6 4 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ∃ 𝑡 ∈ 𝐵 𝑌 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) ) ) |
| 13 |
|
eqcom |
⊢ ( ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ↔ 𝑌 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 14 |
13
|
rexbii |
⊢ ( ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ↔ ∃ 𝑡 ∈ 𝐵 𝑌 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 15 |
12 14
|
bitr4di |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ) |
| 16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) → 𝑅 ∈ Ring ) |
| 17 |
4
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝐵 ) |
| 18 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 19 |
2 1 18
|
rspcl |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑋 } ⊆ 𝐵 ) → ( 𝐾 ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
| 20 |
6 17 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) → ( 𝐾 ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) → 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) |
| 23 |
22
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) → { 𝑌 } ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
| 24 |
2 18
|
rspssp |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐾 ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝑅 ) ∧ { 𝑌 } ⊆ ( 𝐾 ‘ { 𝑋 } ) ) → ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
| 25 |
16 21 23 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) → ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) → ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
| 27 |
5
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝐵 ) |
| 28 |
2 1
|
rspssid |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑌 } ⊆ 𝐵 ) → { 𝑌 } ⊆ ( 𝐾 ‘ { 𝑌 } ) ) |
| 29 |
6 27 28
|
syl2anc |
⊢ ( 𝜑 → { 𝑌 } ⊆ ( 𝐾 ‘ { 𝑌 } ) ) |
| 30 |
|
snssg |
⊢ ( 𝑌 ∈ 𝐵 → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑌 } ) ↔ { 𝑌 } ⊆ ( 𝐾 ‘ { 𝑌 } ) ) ) |
| 31 |
30
|
biimpar |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ { 𝑌 } ⊆ ( 𝐾 ‘ { 𝑌 } ) ) → 𝑌 ∈ ( 𝐾 ‘ { 𝑌 } ) ) |
| 32 |
5 29 31
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐾 ‘ { 𝑌 } ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) → 𝑌 ∈ ( 𝐾 ‘ { 𝑌 } ) ) |
| 34 |
26 33
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) → 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) |
| 35 |
25 34
|
impbida |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) ) |
| 36 |
10 15 35
|
3bitr2d |
⊢ ( 𝜑 → ( 𝑋 ∥ 𝑌 ↔ ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) ) |