Description: In a ring, an element X divides Y iff the ideal generated by Y is a subset of the ideal generated by X (Contributed by Thierry Arnoux, 22-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvdsrspss.b | |
|
dvdsrspss.k | |
||
dvdsrspss.d | |
||
dvdsrspss.x | |
||
dvdsrspss.y | |
||
dvdsrspss.r | |
||
Assertion | dvdsrspss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsrspss.b | |
|
2 | dvdsrspss.k | |
|
3 | dvdsrspss.d | |
|
4 | dvdsrspss.x | |
|
5 | dvdsrspss.y | |
|
6 | dvdsrspss.r | |
|
7 | eqid | |
|
8 | 1 3 7 | dvdsr | |
9 | 4 | biantrurd | |
10 | 8 9 | bitr4id | |
11 | 1 7 2 | rspsnel | |
12 | 6 4 11 | syl2anc | |
13 | eqcom | |
|
14 | 13 | rexbii | |
15 | 12 14 | bitr4di | |
16 | 6 | adantr | |
17 | 4 | snssd | |
18 | eqid | |
|
19 | 2 1 18 | rspcl | |
20 | 6 17 19 | syl2anc | |
21 | 20 | adantr | |
22 | simpr | |
|
23 | 22 | snssd | |
24 | 2 18 | rspssp | |
25 | 16 21 23 24 | syl3anc | |
26 | simpr | |
|
27 | 5 | snssd | |
28 | 2 1 | rspssid | |
29 | 6 27 28 | syl2anc | |
30 | snssg | |
|
31 | 30 | biimpar | |
32 | 5 29 31 | syl2anc | |
33 | 32 | adantr | |
34 | 26 33 | sseldd | |
35 | 25 34 | impbida | |
36 | 10 15 35 | 3bitr2d | |