Metamath Proof Explorer


Theorem rspssp

Description: The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses rspcl.k K=RSpanR
rspssp.u U=LIdealR
Assertion rspssp RRingIUGIKGI

Proof

Step Hyp Ref Expression
1 rspcl.k K=RSpanR
2 rspssp.u U=LIdealR
3 rlmlmod RRingringLModRLMod
4 lidlval LIdealR=LSubSpringLModR
5 2 4 eqtri U=LSubSpringLModR
6 rspval RSpanR=LSpanringLModR
7 1 6 eqtri K=LSpanringLModR
8 5 7 lspssp ringLModRLModIUGIKGI
9 3 8 syl3an1 RRingIUGIKGI