Metamath Proof Explorer


Theorem rspssp

Description: The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses rspcl.k K = RSpan R
rspssp.u U = LIdeal R
Assertion rspssp R Ring I U G I K G I

Proof

Step Hyp Ref Expression
1 rspcl.k K = RSpan R
2 rspssp.u U = LIdeal R
3 rlmlmod R Ring ringLMod R LMod
4 lidlval LIdeal R = LSubSp ringLMod R
5 2 4 eqtri U = LSubSp ringLMod R
6 rspval RSpan R = LSpan ringLMod R
7 1 6 eqtri K = LSpan ringLMod R
8 5 7 lspssp ringLMod R LMod I U G I K G I
9 3 8 syl3an1 R Ring I U G I K G I