Metamath Proof Explorer


Theorem rspsnasso

Description: Two elements X and Y of a ring R are associates, i.e. each divides the other, iff the ideals they generate are equal. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses dvdsrspss.b 𝐵 = ( Base ‘ 𝑅 )
dvdsrspss.k 𝐾 = ( RSpan ‘ 𝑅 )
dvdsrspss.d = ( ∥r𝑅 )
dvdsrspss.x ( 𝜑𝑋𝐵 )
dvdsrspss.y ( 𝜑𝑌𝐵 )
dvdsrspss.r ( 𝜑𝑅 ∈ Ring )
Assertion rspsnasso ( 𝜑 → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ ( 𝐾 ‘ { 𝑌 } ) = ( 𝐾 ‘ { 𝑋 } ) ) )

Proof

Step Hyp Ref Expression
1 dvdsrspss.b 𝐵 = ( Base ‘ 𝑅 )
2 dvdsrspss.k 𝐾 = ( RSpan ‘ 𝑅 )
3 dvdsrspss.d = ( ∥r𝑅 )
4 dvdsrspss.x ( 𝜑𝑋𝐵 )
5 dvdsrspss.y ( 𝜑𝑌𝐵 )
6 dvdsrspss.r ( 𝜑𝑅 ∈ Ring )
7 1 2 3 4 5 6 dvdsrspss ( 𝜑 → ( 𝑋 𝑌 ↔ ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) )
8 1 2 3 5 4 6 dvdsrspss ( 𝜑 → ( 𝑌 𝑋 ↔ ( 𝐾 ‘ { 𝑋 } ) ⊆ ( 𝐾 ‘ { 𝑌 } ) ) )
9 7 8 anbi12d ( 𝜑 → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ ( ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ∧ ( 𝐾 ‘ { 𝑋 } ) ⊆ ( 𝐾 ‘ { 𝑌 } ) ) ) )
10 eqss ( ( 𝐾 ‘ { 𝑌 } ) = ( 𝐾 ‘ { 𝑋 } ) ↔ ( ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ∧ ( 𝐾 ‘ { 𝑋 } ) ⊆ ( 𝐾 ‘ { 𝑌 } ) ) )
11 9 10 bitr4di ( 𝜑 → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ ( 𝐾 ‘ { 𝑌 } ) = ( 𝐾 ‘ { 𝑋 } ) ) )