| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsrspss.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
dvdsrspss.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
| 3 |
|
dvdsrspss.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
| 4 |
|
dvdsrspss.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
dvdsrspss.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
dvdsruassoi.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 7 |
|
dvdsruassoi.2 |
⊢ · = ( .r ‘ 𝑅 ) |
| 8 |
|
dvdsruasso.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 9 |
1 3 7
|
dvdsr |
⊢ ( 𝑋 ∥ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) ) |
| 10 |
4
|
biantrurd |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) ) ) |
| 11 |
9 10
|
bitr4id |
⊢ ( 𝜑 → ( 𝑋 ∥ 𝑌 ↔ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) ) |
| 12 |
1 3 7
|
dvdsr |
⊢ ( 𝑌 ∥ 𝑋 ↔ ( 𝑌 ∈ 𝐵 ∧ ∃ 𝑠 ∈ 𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) ) |
| 13 |
5
|
biantrurd |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ↔ ( 𝑌 ∈ 𝐵 ∧ ∃ 𝑠 ∈ 𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) ) ) |
| 14 |
12 13
|
bitr4id |
⊢ ( 𝜑 → ( 𝑌 ∥ 𝑋 ↔ ∃ 𝑠 ∈ 𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) ) |
| 15 |
11 14
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋 ) ↔ ( ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ∧ ∃ 𝑠 ∈ 𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) ) ) |
| 16 |
8
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 17 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 18 |
6 17
|
1unit |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝑈 ) |
| 19 |
16 18
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝑈 ) |
| 20 |
19
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝑈 ) |
| 21 |
|
oveq1 |
⊢ ( 𝑢 = ( 1r ‘ 𝑅 ) → ( 𝑢 · 𝑋 ) = ( ( 1r ‘ 𝑅 ) · 𝑋 ) ) |
| 22 |
21
|
eqeq1d |
⊢ ( 𝑢 = ( 1r ‘ 𝑅 ) → ( ( 𝑢 · 𝑋 ) = 𝑌 ↔ ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑌 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) ∧ 𝑢 = ( 1r ‘ 𝑅 ) ) → ( ( 𝑢 · 𝑋 ) = 𝑌 ↔ ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑌 ) ) |
| 24 |
16
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 25 |
4
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → 𝑋 ∈ 𝐵 ) |
| 26 |
1 7 17 24 25
|
ringlidmd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ) |
| 27 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → 𝑋 = ( 0g ‘ 𝑅 ) ) |
| 28 |
27
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( 𝑡 · 𝑋 ) = ( 𝑡 · ( 0g ‘ 𝑅 ) ) ) |
| 29 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( 𝑡 · 𝑋 ) = 𝑌 ) |
| 30 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → 𝑡 ∈ 𝐵 ) |
| 31 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 32 |
1 7 31
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑡 ∈ 𝐵 ) → ( 𝑡 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 33 |
24 30 32
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( 𝑡 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 34 |
28 29 33
|
3eqtr3rd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) = 𝑌 ) |
| 35 |
26 27 34
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑌 ) |
| 36 |
20 23 35
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 = ( 0g ‘ 𝑅 ) ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ) |
| 37 |
|
isidom |
⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
| 38 |
8 37
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
| 39 |
38
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 40 |
39
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ CRing ) |
| 41 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑠 ∈ 𝐵 ) |
| 42 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑡 ∈ 𝐵 ) |
| 43 |
16
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 44 |
1 7 43 41 42
|
ringcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑠 · 𝑡 ) ∈ 𝐵 ) |
| 45 |
1 17
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 46 |
43 45
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 47 |
4
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑋 ∈ 𝐵 ) |
| 48 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑋 ≠ ( 0g ‘ 𝑅 ) ) |
| 49 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) ) |
| 50 |
47 48 49
|
sylanbrc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑋 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 51 |
8
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ IDomn ) |
| 52 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑡 · 𝑋 ) = 𝑌 ) |
| 53 |
52
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑠 · ( 𝑡 · 𝑋 ) ) = ( 𝑠 · 𝑌 ) ) |
| 54 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑠 · 𝑌 ) = 𝑋 ) |
| 55 |
53 54
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑠 · ( 𝑡 · 𝑋 ) ) = 𝑋 ) |
| 56 |
1 7 43 41 42 47
|
ringassd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝑠 · 𝑡 ) · 𝑋 ) = ( 𝑠 · ( 𝑡 · 𝑋 ) ) ) |
| 57 |
1 7 17 43 47
|
ringlidmd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ) |
| 58 |
55 56 57
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝑠 · 𝑡 ) · 𝑋 ) = ( ( 1r ‘ 𝑅 ) · 𝑋 ) ) |
| 59 |
1 31 7 44 46 50 51 58
|
idomrcan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑠 · 𝑡 ) = ( 1r ‘ 𝑅 ) ) |
| 60 |
43 18
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝑈 ) |
| 61 |
59 60
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑠 · 𝑡 ) ∈ 𝑈 ) |
| 62 |
6 7 1
|
unitmulclb |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵 ) → ( ( 𝑠 · 𝑡 ) ∈ 𝑈 ↔ ( 𝑠 ∈ 𝑈 ∧ 𝑡 ∈ 𝑈 ) ) ) |
| 63 |
62
|
simplbda |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑡 ) ∈ 𝑈 ) → 𝑡 ∈ 𝑈 ) |
| 64 |
40 41 42 61 63
|
syl31anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → 𝑡 ∈ 𝑈 ) |
| 65 |
|
oveq1 |
⊢ ( 𝑢 = 𝑡 → ( 𝑢 · 𝑋 ) = ( 𝑡 · 𝑋 ) ) |
| 66 |
65
|
eqeq1d |
⊢ ( 𝑢 = 𝑡 → ( ( 𝑢 · 𝑋 ) = 𝑌 ↔ ( 𝑡 · 𝑋 ) = 𝑌 ) ) |
| 67 |
66
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑢 = 𝑡 ) → ( ( 𝑢 · 𝑋 ) = 𝑌 ↔ ( 𝑡 · 𝑋 ) = 𝑌 ) ) |
| 68 |
64 67 52
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑅 ) ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ) |
| 69 |
36 68
|
pm2.61dane |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑋 ) = 𝑌 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ) |
| 70 |
69
|
r19.29an |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ) |
| 71 |
70
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ) |
| 72 |
71
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) → ( ( 𝑠 · 𝑌 ) = 𝑋 → ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ) ) |
| 73 |
72
|
an32s |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) → ( ( 𝑠 · 𝑌 ) = 𝑋 → ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ) ) |
| 74 |
73
|
imp |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑠 · 𝑌 ) = 𝑋 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ) |
| 75 |
74
|
r19.29an |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) ∧ ∃ 𝑠 ∈ 𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ) |
| 76 |
75
|
anasss |
⊢ ( ( 𝜑 ∧ ( ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ∧ ∃ 𝑠 ∈ 𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ) |
| 77 |
15 76
|
sylbida |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋 ) ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ) |
| 78 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → 𝑋 ∈ 𝐵 ) |
| 79 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → 𝑌 ∈ 𝐵 ) |
| 80 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → 𝑅 ∈ Ring ) |
| 81 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → 𝑢 ∈ 𝑈 ) |
| 82 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( 𝑢 · 𝑋 ) = 𝑌 ) |
| 83 |
1 2 3 78 79 6 7 80 81 82
|
dvdsruassoi |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 · 𝑋 ) = 𝑌 ) → ( 𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋 ) ) |
| 84 |
83
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ) → ( 𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋 ) ) |
| 85 |
77 84
|
impbida |
⊢ ( 𝜑 → ( ( 𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋 ) ↔ ∃ 𝑢 ∈ 𝑈 ( 𝑢 · 𝑋 ) = 𝑌 ) ) |