| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsrspss.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
dvdsrspss.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
| 3 |
|
dvdsrspss.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
| 4 |
|
dvdsrspss.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
dvdsrspss.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
dvdsruassoi.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 7 |
|
dvdsruassoi.2 |
⊢ · = ( .r ‘ 𝑅 ) |
| 8 |
|
dvdsruassoi.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 9 |
|
dvdsruassoi.3 |
⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) |
| 10 |
|
dvdsruassoi.4 |
⊢ ( 𝜑 → ( 𝑉 · 𝑋 ) = 𝑌 ) |
| 11 |
1 6
|
unitss |
⊢ 𝑈 ⊆ 𝐵 |
| 12 |
11 9
|
sselid |
⊢ ( 𝜑 → 𝑉 ∈ 𝐵 ) |
| 13 |
|
oveq1 |
⊢ ( 𝑡 = 𝑉 → ( 𝑡 · 𝑋 ) = ( 𝑉 · 𝑋 ) ) |
| 14 |
13
|
eqeq1d |
⊢ ( 𝑡 = 𝑉 → ( ( 𝑡 · 𝑋 ) = 𝑌 ↔ ( 𝑉 · 𝑋 ) = 𝑌 ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝑉 ) → ( ( 𝑡 · 𝑋 ) = 𝑌 ↔ ( 𝑉 · 𝑋 ) = 𝑌 ) ) |
| 16 |
12 15 10
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) |
| 17 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
| 18 |
6 17 1
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑉 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) ∈ 𝐵 ) |
| 19 |
8 9 18
|
syl2anc |
⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) ∈ 𝐵 ) |
| 20 |
|
oveq1 |
⊢ ( 𝑠 = ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) → ( 𝑠 · 𝑌 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) · 𝑌 ) ) |
| 21 |
20
|
eqeq1d |
⊢ ( 𝑠 = ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) → ( ( 𝑠 · 𝑌 ) = 𝑋 ↔ ( ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) · 𝑌 ) = 𝑋 ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 = ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) ) → ( ( 𝑠 · 𝑌 ) = 𝑋 ↔ ( ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) · 𝑌 ) = 𝑋 ) ) |
| 23 |
1 7 8 19 12 4
|
ringassd |
⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) · 𝑉 ) · 𝑋 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) · ( 𝑉 · 𝑋 ) ) ) |
| 24 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 25 |
6 17 7 24
|
unitlinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑉 ∈ 𝑈 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) · 𝑉 ) = ( 1r ‘ 𝑅 ) ) |
| 26 |
8 9 25
|
syl2anc |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) · 𝑉 ) = ( 1r ‘ 𝑅 ) ) |
| 27 |
26
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) · 𝑉 ) · 𝑋 ) = ( ( 1r ‘ 𝑅 ) · 𝑋 ) ) |
| 28 |
1 7 24 8 4
|
ringlidmd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ) |
| 29 |
27 28
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) · 𝑉 ) · 𝑋 ) = 𝑋 ) |
| 30 |
10
|
oveq2d |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) · ( 𝑉 · 𝑋 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) · 𝑌 ) ) |
| 31 |
23 29 30
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑉 ) · 𝑌 ) = 𝑋 ) |
| 32 |
19 22 31
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) |
| 33 |
1 3 7
|
dvdsr |
⊢ ( 𝑋 ∥ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) ) |
| 34 |
4
|
biantrurd |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) ) ) |
| 35 |
33 34
|
bitr4id |
⊢ ( 𝜑 → ( 𝑋 ∥ 𝑌 ↔ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) ) |
| 36 |
1 3 7
|
dvdsr |
⊢ ( 𝑌 ∥ 𝑋 ↔ ( 𝑌 ∈ 𝐵 ∧ ∃ 𝑠 ∈ 𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) ) |
| 37 |
5
|
biantrurd |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ↔ ( 𝑌 ∈ 𝐵 ∧ ∃ 𝑠 ∈ 𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) ) ) |
| 38 |
36 37
|
bitr4id |
⊢ ( 𝜑 → ( 𝑌 ∥ 𝑋 ↔ ∃ 𝑠 ∈ 𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) ) |
| 39 |
35 38
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋 ) ↔ ( ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ∧ ∃ 𝑠 ∈ 𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) ) ) |
| 40 |
16 32 39
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋 ) ) |