Metamath Proof Explorer


Theorem dvdsruasso

Description: Two elements X and Y of a ring R are associates, i.e. each divides the other, iff they are unit multiples of each other. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses dvdsrspss.b B=BaseR
dvdsrspss.k K=RSpanR
dvdsrspss.d ˙=rR
dvdsrspss.x φXB
dvdsrspss.y φYB
dvdsruassoi.1 U=UnitR
dvdsruassoi.2 ·˙=R
dvdsruasso.r φRIDomn
Assertion dvdsruasso φX˙YY˙XuUu·˙X=Y

Proof

Step Hyp Ref Expression
1 dvdsrspss.b B=BaseR
2 dvdsrspss.k K=RSpanR
3 dvdsrspss.d ˙=rR
4 dvdsrspss.x φXB
5 dvdsrspss.y φYB
6 dvdsruassoi.1 U=UnitR
7 dvdsruassoi.2 ·˙=R
8 dvdsruasso.r φRIDomn
9 1 3 7 dvdsr X˙YXBtBt·˙X=Y
10 4 biantrurd φtBt·˙X=YXBtBt·˙X=Y
11 9 10 bitr4id φX˙YtBt·˙X=Y
12 1 3 7 dvdsr Y˙XYBsBs·˙Y=X
13 5 biantrurd φsBs·˙Y=XYBsBs·˙Y=X
14 12 13 bitr4id φY˙XsBs·˙Y=X
15 11 14 anbi12d φX˙YY˙XtBt·˙X=YsBs·˙Y=X
16 8 idomringd φRRing
17 eqid 1R=1R
18 6 17 1unit RRing1RU
19 16 18 syl φ1RU
20 19 ad5antr φsBs·˙Y=XtBt·˙X=YX=0R1RU
21 oveq1 u=1Ru·˙X=1R·˙X
22 21 eqeq1d u=1Ru·˙X=Y1R·˙X=Y
23 22 adantl φsBs·˙Y=XtBt·˙X=YX=0Ru=1Ru·˙X=Y1R·˙X=Y
24 16 ad5antr φsBs·˙Y=XtBt·˙X=YX=0RRRing
25 4 ad5antr φsBs·˙Y=XtBt·˙X=YX=0RXB
26 1 7 17 24 25 ringlidmd φsBs·˙Y=XtBt·˙X=YX=0R1R·˙X=X
27 simpr φsBs·˙Y=XtBt·˙X=YX=0RX=0R
28 27 oveq2d φsBs·˙Y=XtBt·˙X=YX=0Rt·˙X=t·˙0R
29 simplr φsBs·˙Y=XtBt·˙X=YX=0Rt·˙X=Y
30 simpllr φsBs·˙Y=XtBt·˙X=YX=0RtB
31 eqid 0R=0R
32 1 7 31 ringrz RRingtBt·˙0R=0R
33 24 30 32 syl2anc φsBs·˙Y=XtBt·˙X=YX=0Rt·˙0R=0R
34 28 29 33 3eqtr3rd φsBs·˙Y=XtBt·˙X=YX=0R0R=Y
35 26 27 34 3eqtrd φsBs·˙Y=XtBt·˙X=YX=0R1R·˙X=Y
36 20 23 35 rspcedvd φsBs·˙Y=XtBt·˙X=YX=0RuUu·˙X=Y
37 isidom RIDomnRCRingRDomn
38 8 37 sylib φRCRingRDomn
39 38 simpld φRCRing
40 39 ad5antr φsBs·˙Y=XtBt·˙X=YX0RRCRing
41 simp-5r φsBs·˙Y=XtBt·˙X=YX0RsB
42 simpllr φsBs·˙Y=XtBt·˙X=YX0RtB
43 4 ad5antr φsBs·˙Y=XtBt·˙X=YX0RXB
44 simpr φsBs·˙Y=XtBt·˙X=YX0RX0R
45 eldifsn XB0RXBX0R
46 43 44 45 sylanbrc φsBs·˙Y=XtBt·˙X=YX0RXB0R
47 16 ad5antr φsBs·˙Y=XtBt·˙X=YX0RRRing
48 1 7 47 41 42 ringcld φsBs·˙Y=XtBt·˙X=YX0Rs·˙tB
49 1 17 ringidcl RRing1RB
50 47 49 syl φsBs·˙Y=XtBt·˙X=YX0R1RB
51 8 ad5antr φsBs·˙Y=XtBt·˙X=YX0RRIDomn
52 simplr φsBs·˙Y=XtBt·˙X=YX0Rt·˙X=Y
53 52 oveq2d φsBs·˙Y=XtBt·˙X=YX0Rs·˙t·˙X=s·˙Y
54 simp-4r φsBs·˙Y=XtBt·˙X=YX0Rs·˙Y=X
55 53 54 eqtrd φsBs·˙Y=XtBt·˙X=YX0Rs·˙t·˙X=X
56 1 7 47 41 42 43 ringassd φsBs·˙Y=XtBt·˙X=YX0Rs·˙t·˙X=s·˙t·˙X
57 1 7 17 47 43 ringlidmd φsBs·˙Y=XtBt·˙X=YX0R1R·˙X=X
58 55 56 57 3eqtr4d φsBs·˙Y=XtBt·˙X=YX0Rs·˙t·˙X=1R·˙X
59 1 31 7 46 48 50 51 58 idomrcan φsBs·˙Y=XtBt·˙X=YX0Rs·˙t=1R
60 47 18 syl φsBs·˙Y=XtBt·˙X=YX0R1RU
61 59 60 eqeltrd φsBs·˙Y=XtBt·˙X=YX0Rs·˙tU
62 6 7 1 unitmulclb RCRingsBtBs·˙tUsUtU
63 62 simplbda RCRingsBtBs·˙tUtU
64 40 41 42 61 63 syl31anc φsBs·˙Y=XtBt·˙X=YX0RtU
65 oveq1 u=tu·˙X=t·˙X
66 65 eqeq1d u=tu·˙X=Yt·˙X=Y
67 66 adantl φsBs·˙Y=XtBt·˙X=YX0Ru=tu·˙X=Yt·˙X=Y
68 64 67 52 rspcedvd φsBs·˙Y=XtBt·˙X=YX0RuUu·˙X=Y
69 36 68 pm2.61dane φsBs·˙Y=XtBt·˙X=YuUu·˙X=Y
70 69 r19.29an φsBs·˙Y=XtBt·˙X=YuUu·˙X=Y
71 70 an32s φsBtBt·˙X=Ys·˙Y=XuUu·˙X=Y
72 71 ex φsBtBt·˙X=Ys·˙Y=XuUu·˙X=Y
73 72 an32s φtBt·˙X=YsBs·˙Y=XuUu·˙X=Y
74 73 imp φtBt·˙X=YsBs·˙Y=XuUu·˙X=Y
75 74 r19.29an φtBt·˙X=YsBs·˙Y=XuUu·˙X=Y
76 75 anasss φtBt·˙X=YsBs·˙Y=XuUu·˙X=Y
77 15 76 sylbida φX˙YY˙XuUu·˙X=Y
78 4 ad2antrr φuUu·˙X=YXB
79 5 ad2antrr φuUu·˙X=YYB
80 16 ad2antrr φuUu·˙X=YRRing
81 simplr φuUu·˙X=YuU
82 simpr φuUu·˙X=Yu·˙X=Y
83 1 2 3 78 79 6 7 80 81 82 dvdsruassoi φuUu·˙X=YX˙YY˙X
84 83 r19.29an φuUu·˙X=YX˙YY˙X
85 77 84 impbida φX˙YY˙XuUu·˙X=Y