Step |
Hyp |
Ref |
Expression |
1 |
|
pidlnz.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
pidlnz.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
pidlnz.3 |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝐾 ‘ { 𝑋 } ) = { 0 } ) → 𝑅 ∈ Ring ) |
5 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝐾 ‘ { 𝑋 } ) = { 0 } ) → 𝑋 ∈ 𝐵 ) |
6 |
1 3
|
rspsnid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ ( 𝐾 ‘ { 𝑋 } ) ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝐾 ‘ { 𝑋 } ) = { 0 } ) → 𝑋 ∈ ( 𝐾 ‘ { 𝑋 } ) ) |
8 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝐾 ‘ { 𝑋 } ) = { 0 } ) → ( 𝐾 ‘ { 𝑋 } ) = { 0 } ) |
9 |
7 8
|
eleqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝐾 ‘ { 𝑋 } ) = { 0 } ) → 𝑋 ∈ { 0 } ) |
10 |
|
elsni |
⊢ ( 𝑋 ∈ { 0 } → 𝑋 = 0 ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝐾 ‘ { 𝑋 } ) = { 0 } ) → 𝑋 = 0 ) |
12 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝐾 ‘ { 𝑋 } ) = { 0 } ) → 𝑋 ≠ 0 ) |
13 |
12
|
neneqd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝐾 ‘ { 𝑋 } ) = { 0 } ) → ¬ 𝑋 = 0 ) |
14 |
11 13
|
pm2.65da |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ¬ ( 𝐾 ‘ { 𝑋 } ) = { 0 } ) |
15 |
14
|
neqned |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐾 ‘ { 𝑋 } ) ≠ { 0 } ) |