Metamath Proof Explorer


Theorem irngssv

Description: An integral element is an element of the base set. (Contributed by Thierry Arnoux, 28-Jan-2025)

Ref Expression
Hypotheses irngval.o O = R evalSub 1 S
irngval.u U = R 𝑠 S
irngval.b B = Base R
irngval.0 0 ˙ = 0 R
elirng.r φ R CRing
elirng.s φ S SubRing R
Assertion irngssv φ R IntgRing S B

Proof

Step Hyp Ref Expression
1 irngval.o O = R evalSub 1 S
2 irngval.u U = R 𝑠 S
3 irngval.b B = Base R
4 irngval.0 0 ˙ = 0 R
5 elirng.r φ R CRing
6 elirng.s φ S SubRing R
7 1 2 3 4 5 6 elirng φ x R IntgRing S x B f Monic 1p U O f x = 0 ˙
8 simpl x B f Monic 1p U O f x = 0 ˙ x B
9 7 8 biimtrdi φ x R IntgRing S x B
10 9 ssrdv φ R IntgRing S B