Metamath Proof Explorer


Theorem irngssv

Description: An integral element is an element of the base set. (Contributed by Thierry Arnoux, 28-Jan-2025)

Ref Expression
Hypotheses irngval.o 𝑂 = ( 𝑅 evalSub1 𝑆 )
irngval.u 𝑈 = ( 𝑅s 𝑆 )
irngval.b 𝐵 = ( Base ‘ 𝑅 )
irngval.0 0 = ( 0g𝑅 )
elirng.r ( 𝜑𝑅 ∈ CRing )
elirng.s ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
Assertion irngssv ( 𝜑 → ( 𝑅 IntgRing 𝑆 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 irngval.o 𝑂 = ( 𝑅 evalSub1 𝑆 )
2 irngval.u 𝑈 = ( 𝑅s 𝑆 )
3 irngval.b 𝐵 = ( Base ‘ 𝑅 )
4 irngval.0 0 = ( 0g𝑅 )
5 elirng.r ( 𝜑𝑅 ∈ CRing )
6 elirng.s ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
7 1 2 3 4 5 6 elirng ( 𝜑 → ( 𝑥 ∈ ( 𝑅 IntgRing 𝑆 ) ↔ ( 𝑥𝐵 ∧ ∃ 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) ‘ 𝑥 ) = 0 ) ) )
8 simpl ( ( 𝑥𝐵 ∧ ∃ 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) ‘ 𝑥 ) = 0 ) → 𝑥𝐵 )
9 7 8 syl6bi ( 𝜑 → ( 𝑥 ∈ ( 𝑅 IntgRing 𝑆 ) → 𝑥𝐵 ) )
10 9 ssrdv ( 𝜑 → ( 𝑅 IntgRing 𝑆 ) ⊆ 𝐵 )