Step |
Hyp |
Ref |
Expression |
1 |
|
irngval.o |
⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) |
2 |
|
irngval.u |
⊢ 𝑈 = ( 𝑅 ↾s 𝑆 ) |
3 |
|
irngval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
irngval.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
elirng.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
elirng.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
7 |
1 2 3 4 5 6
|
elirng |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑅 IntgRing 𝑆 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑓 ∈ ( Monic1p ‘ 𝑈 ) ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 ) = 0 ) ) ) |
8 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑓 ∈ ( Monic1p ‘ 𝑈 ) ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 ) = 0 ) → 𝑥 ∈ 𝐵 ) |
9 |
7 8
|
syl6bi |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑅 IntgRing 𝑆 ) → 𝑥 ∈ 𝐵 ) ) |
10 |
9
|
ssrdv |
⊢ ( 𝜑 → ( 𝑅 IntgRing 𝑆 ) ⊆ 𝐵 ) |