Metamath Proof Explorer


Theorem elirng

Description: Property for an element X of a field R to be integral over a subring S . (Contributed by Thierry Arnoux, 28-Jan-2025)

Ref Expression
Hypotheses irngval.o 𝑂 = ( 𝑅 evalSub1 𝑆 )
irngval.u 𝑈 = ( 𝑅s 𝑆 )
irngval.b 𝐵 = ( Base ‘ 𝑅 )
irngval.0 0 = ( 0g𝑅 )
elirng.r ( 𝜑𝑅 ∈ CRing )
elirng.s ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
Assertion elirng ( 𝜑 → ( 𝑋 ∈ ( 𝑅 IntgRing 𝑆 ) ↔ ( 𝑋𝐵 ∧ ∃ 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) ‘ 𝑋 ) = 0 ) ) )

Proof

Step Hyp Ref Expression
1 irngval.o 𝑂 = ( 𝑅 evalSub1 𝑆 )
2 irngval.u 𝑈 = ( 𝑅s 𝑆 )
3 irngval.b 𝐵 = ( Base ‘ 𝑅 )
4 irngval.0 0 = ( 0g𝑅 )
5 elirng.r ( 𝜑𝑅 ∈ CRing )
6 elirng.s ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
7 5 crngringd ( 𝜑𝑅 ∈ Ring )
8 3 subrgss ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆𝐵 )
9 6 8 syl ( 𝜑𝑆𝐵 )
10 1 2 3 4 7 9 irngval ( 𝜑 → ( 𝑅 IntgRing 𝑆 ) = 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) “ { 0 } ) )
11 10 eleq2d ( 𝜑 → ( 𝑋 ∈ ( 𝑅 IntgRing 𝑆 ) ↔ 𝑋 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) “ { 0 } ) ) )
12 eliun ( 𝑋 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) “ { 0 } ) ↔ ∃ 𝑓 ∈ ( Monic1p𝑈 ) 𝑋 ∈ ( ( 𝑂𝑓 ) “ { 0 } ) )
13 11 12 bitrdi ( 𝜑 → ( 𝑋 ∈ ( 𝑅 IntgRing 𝑆 ) ↔ ∃ 𝑓 ∈ ( Monic1p𝑈 ) 𝑋 ∈ ( ( 𝑂𝑓 ) “ { 0 } ) ) )
14 eqid ( 𝑅s 𝐵 ) = ( 𝑅s 𝐵 )
15 eqid ( Base ‘ ( 𝑅s 𝐵 ) ) = ( Base ‘ ( 𝑅s 𝐵 ) )
16 7 adantr ( ( 𝜑𝑓 ∈ ( Monic1p𝑈 ) ) → 𝑅 ∈ Ring )
17 3 fvexi 𝐵 ∈ V
18 17 a1i ( ( 𝜑𝑓 ∈ ( Monic1p𝑈 ) ) → 𝐵 ∈ V )
19 eqid ( Poly1𝑈 ) = ( Poly1𝑈 )
20 1 3 14 2 19 evls1rhm ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑂 ∈ ( ( Poly1𝑈 ) RingHom ( 𝑅s 𝐵 ) ) )
21 5 6 20 syl2anc ( 𝜑𝑂 ∈ ( ( Poly1𝑈 ) RingHom ( 𝑅s 𝐵 ) ) )
22 eqid ( Base ‘ ( Poly1𝑈 ) ) = ( Base ‘ ( Poly1𝑈 ) )
23 22 15 rhmf ( 𝑂 ∈ ( ( Poly1𝑈 ) RingHom ( 𝑅s 𝐵 ) ) → 𝑂 : ( Base ‘ ( Poly1𝑈 ) ) ⟶ ( Base ‘ ( 𝑅s 𝐵 ) ) )
24 21 23 syl ( 𝜑𝑂 : ( Base ‘ ( Poly1𝑈 ) ) ⟶ ( Base ‘ ( 𝑅s 𝐵 ) ) )
25 24 adantr ( ( 𝜑𝑓 ∈ ( Monic1p𝑈 ) ) → 𝑂 : ( Base ‘ ( Poly1𝑈 ) ) ⟶ ( Base ‘ ( 𝑅s 𝐵 ) ) )
26 eqid ( Monic1p𝑈 ) = ( Monic1p𝑈 )
27 19 22 26 mon1pcl ( 𝑓 ∈ ( Monic1p𝑈 ) → 𝑓 ∈ ( Base ‘ ( Poly1𝑈 ) ) )
28 27 adantl ( ( 𝜑𝑓 ∈ ( Monic1p𝑈 ) ) → 𝑓 ∈ ( Base ‘ ( Poly1𝑈 ) ) )
29 25 28 ffvelcdmd ( ( 𝜑𝑓 ∈ ( Monic1p𝑈 ) ) → ( 𝑂𝑓 ) ∈ ( Base ‘ ( 𝑅s 𝐵 ) ) )
30 14 3 15 16 18 29 pwselbas ( ( 𝜑𝑓 ∈ ( Monic1p𝑈 ) ) → ( 𝑂𝑓 ) : 𝐵𝐵 )
31 ffn ( ( 𝑂𝑓 ) : 𝐵𝐵 → ( 𝑂𝑓 ) Fn 𝐵 )
32 fniniseg ( ( 𝑂𝑓 ) Fn 𝐵 → ( 𝑋 ∈ ( ( 𝑂𝑓 ) “ { 0 } ) ↔ ( 𝑋𝐵 ∧ ( ( 𝑂𝑓 ) ‘ 𝑋 ) = 0 ) ) )
33 30 31 32 3syl ( ( 𝜑𝑓 ∈ ( Monic1p𝑈 ) ) → ( 𝑋 ∈ ( ( 𝑂𝑓 ) “ { 0 } ) ↔ ( 𝑋𝐵 ∧ ( ( 𝑂𝑓 ) ‘ 𝑋 ) = 0 ) ) )
34 33 rexbidva ( 𝜑 → ( ∃ 𝑓 ∈ ( Monic1p𝑈 ) 𝑋 ∈ ( ( 𝑂𝑓 ) “ { 0 } ) ↔ ∃ 𝑓 ∈ ( Monic1p𝑈 ) ( 𝑋𝐵 ∧ ( ( 𝑂𝑓 ) ‘ 𝑋 ) = 0 ) ) )
35 13 34 bitrd ( 𝜑 → ( 𝑋 ∈ ( 𝑅 IntgRing 𝑆 ) ↔ ∃ 𝑓 ∈ ( Monic1p𝑈 ) ( 𝑋𝐵 ∧ ( ( 𝑂𝑓 ) ‘ 𝑋 ) = 0 ) ) )
36 r19.42v ( ∃ 𝑓 ∈ ( Monic1p𝑈 ) ( 𝑋𝐵 ∧ ( ( 𝑂𝑓 ) ‘ 𝑋 ) = 0 ) ↔ ( 𝑋𝐵 ∧ ∃ 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) ‘ 𝑋 ) = 0 ) )
37 35 36 bitrdi ( 𝜑 → ( 𝑋 ∈ ( 𝑅 IntgRing 𝑆 ) ↔ ( 𝑋𝐵 ∧ ∃ 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) ‘ 𝑋 ) = 0 ) ) )