Metamath Proof Explorer


Theorem irngval

Description: The elements of a field R integral over a subset S . In the case of a subfield, those are the algebraic numbers over the field S within the field R . That is, the numbers X which are roots of monic polynomials P ( X ) with coefficients in S . (Contributed by Thierry Arnoux, 28-Jan-2025)

Ref Expression
Hypotheses irngval.o 𝑂 = ( 𝑅 evalSub1 𝑆 )
irngval.u 𝑈 = ( 𝑅s 𝑆 )
irngval.b 𝐵 = ( Base ‘ 𝑅 )
irngval.0 0 = ( 0g𝑅 )
irngval.r ( 𝜑𝑅 ∈ Ring )
irngval.s ( 𝜑𝑆𝐵 )
Assertion irngval ( 𝜑 → ( 𝑅 IntgRing 𝑆 ) = 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) “ { 0 } ) )

Proof

Step Hyp Ref Expression
1 irngval.o 𝑂 = ( 𝑅 evalSub1 𝑆 )
2 irngval.u 𝑈 = ( 𝑅s 𝑆 )
3 irngval.b 𝐵 = ( Base ‘ 𝑅 )
4 irngval.0 0 = ( 0g𝑅 )
5 irngval.r ( 𝜑𝑅 ∈ Ring )
6 irngval.s ( 𝜑𝑆𝐵 )
7 5 elexd ( 𝜑𝑅 ∈ V )
8 3 fvexi 𝐵 ∈ V
9 8 a1i ( 𝜑𝐵 ∈ V )
10 9 6 ssexd ( 𝜑𝑆 ∈ V )
11 fvexd ( 𝜑 → ( Monic1p𝑈 ) ∈ V )
12 fvex ( 𝑂𝑓 ) ∈ V
13 12 cnvex ( 𝑂𝑓 ) ∈ V
14 13 imaex ( ( 𝑂𝑓 ) “ { 0 } ) ∈ V
15 14 rgenw 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) “ { 0 } ) ∈ V
16 iunexg ( ( ( Monic1p𝑈 ) ∈ V ∧ ∀ 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) “ { 0 } ) ∈ V ) → 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) “ { 0 } ) ∈ V )
17 11 15 16 sylancl ( 𝜑 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) “ { 0 } ) ∈ V )
18 oveq12 ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( 𝑟s 𝑠 ) = ( 𝑅s 𝑆 ) )
19 18 2 eqtr4di ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( 𝑟s 𝑠 ) = 𝑈 )
20 19 fveq2d ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( Monic1p ‘ ( 𝑟s 𝑠 ) ) = ( Monic1p𝑈 ) )
21 oveq12 ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( 𝑟 evalSub1 𝑠 ) = ( 𝑅 evalSub1 𝑆 ) )
22 21 1 eqtr4di ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( 𝑟 evalSub1 𝑠 ) = 𝑂 )
23 22 fveq1d ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) = ( 𝑂𝑓 ) )
24 23 cnveqd ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) = ( 𝑂𝑓 ) )
25 simpl ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → 𝑟 = 𝑅 )
26 25 fveq2d ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( 0g𝑟 ) = ( 0g𝑅 ) )
27 26 4 eqtr4di ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( 0g𝑟 ) = 0 )
28 27 sneqd ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → { ( 0g𝑟 ) } = { 0 } )
29 24 28 imaeq12d ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g𝑟 ) } ) = ( ( 𝑂𝑓 ) “ { 0 } ) )
30 20 29 iuneq12d ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → 𝑓 ∈ ( Monic1p ‘ ( 𝑟s 𝑠 ) ) ( ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g𝑟 ) } ) = 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) “ { 0 } ) )
31 df-irng IntgRing = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ 𝑓 ∈ ( Monic1p ‘ ( 𝑟s 𝑠 ) ) ( ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g𝑟 ) } ) )
32 30 31 ovmpoga ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) “ { 0 } ) ∈ V ) → ( 𝑅 IntgRing 𝑆 ) = 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) “ { 0 } ) )
33 7 10 17 32 syl3anc ( 𝜑 → ( 𝑅 IntgRing 𝑆 ) = 𝑓 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑓 ) “ { 0 } ) )