Step |
Hyp |
Ref |
Expression |
1 |
|
irngval.o |
⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) |
2 |
|
irngval.u |
⊢ 𝑈 = ( 𝑅 ↾s 𝑆 ) |
3 |
|
irngval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
irngval.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
irngval.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
irngval.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
7 |
5
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
8 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
9 |
8
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
10 |
9 6
|
ssexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
11 |
|
fvexd |
⊢ ( 𝜑 → ( Monic1p ‘ 𝑈 ) ∈ V ) |
12 |
|
fvex |
⊢ ( 𝑂 ‘ 𝑓 ) ∈ V |
13 |
12
|
cnvex |
⊢ ◡ ( 𝑂 ‘ 𝑓 ) ∈ V |
14 |
13
|
imaex |
⊢ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 0 } ) ∈ V |
15 |
14
|
rgenw |
⊢ ∀ 𝑓 ∈ ( Monic1p ‘ 𝑈 ) ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 0 } ) ∈ V |
16 |
|
iunexg |
⊢ ( ( ( Monic1p ‘ 𝑈 ) ∈ V ∧ ∀ 𝑓 ∈ ( Monic1p ‘ 𝑈 ) ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 0 } ) ∈ V ) → ∪ 𝑓 ∈ ( Monic1p ‘ 𝑈 ) ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 0 } ) ∈ V ) |
17 |
11 15 16
|
sylancl |
⊢ ( 𝜑 → ∪ 𝑓 ∈ ( Monic1p ‘ 𝑈 ) ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 0 } ) ∈ V ) |
18 |
|
oveq12 |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑟 ↾s 𝑠 ) = ( 𝑅 ↾s 𝑆 ) ) |
19 |
18 2
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑟 ↾s 𝑠 ) = 𝑈 ) |
20 |
19
|
fveq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( Monic1p ‘ ( 𝑟 ↾s 𝑠 ) ) = ( Monic1p ‘ 𝑈 ) ) |
21 |
|
oveq12 |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑟 evalSub1 𝑠 ) = ( 𝑅 evalSub1 𝑆 ) ) |
22 |
21 1
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑟 evalSub1 𝑠 ) = 𝑂 ) |
23 |
22
|
fveq1d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) = ( 𝑂 ‘ 𝑓 ) ) |
24 |
23
|
cnveqd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ◡ ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) = ◡ ( 𝑂 ‘ 𝑓 ) ) |
25 |
|
simpl |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → 𝑟 = 𝑅 ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
27 |
26 4
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 0g ‘ 𝑟 ) = 0 ) |
28 |
27
|
sneqd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → { ( 0g ‘ 𝑟 ) } = { 0 } ) |
29 |
24 28
|
imaeq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( ◡ ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g ‘ 𝑟 ) } ) = ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 0 } ) ) |
30 |
20 29
|
iuneq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ∪ 𝑓 ∈ ( Monic1p ‘ ( 𝑟 ↾s 𝑠 ) ) ( ◡ ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g ‘ 𝑟 ) } ) = ∪ 𝑓 ∈ ( Monic1p ‘ 𝑈 ) ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 0 } ) ) |
31 |
|
df-irng |
⊢ IntgRing = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ∪ 𝑓 ∈ ( Monic1p ‘ ( 𝑟 ↾s 𝑠 ) ) ( ◡ ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g ‘ 𝑟 ) } ) ) |
32 |
30 31
|
ovmpoga |
⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ∧ ∪ 𝑓 ∈ ( Monic1p ‘ 𝑈 ) ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 0 } ) ∈ V ) → ( 𝑅 IntgRing 𝑆 ) = ∪ 𝑓 ∈ ( Monic1p ‘ 𝑈 ) ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 0 } ) ) |
33 |
7 10 17 32
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 IntgRing 𝑆 ) = ∪ 𝑓 ∈ ( Monic1p ‘ 𝑈 ) ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 0 } ) ) |