Step |
Hyp |
Ref |
Expression |
0 |
|
citr |
⊢ IntgRing |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cvv |
⊢ V |
3 |
|
vs |
⊢ 𝑠 |
4 |
|
vf |
⊢ 𝑓 |
5 |
|
cmn1 |
⊢ Monic1p |
6 |
1
|
cv |
⊢ 𝑟 |
7 |
|
cress |
⊢ ↾s |
8 |
3
|
cv |
⊢ 𝑠 |
9 |
6 8 7
|
co |
⊢ ( 𝑟 ↾s 𝑠 ) |
10 |
9 5
|
cfv |
⊢ ( Monic1p ‘ ( 𝑟 ↾s 𝑠 ) ) |
11 |
4
|
cv |
⊢ 𝑓 |
12 |
11
|
ccnv |
⊢ ◡ 𝑓 |
13 |
|
c0g |
⊢ 0g |
14 |
6 13
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
15 |
14
|
csn |
⊢ { ( 0g ‘ 𝑟 ) } |
16 |
12 15
|
cima |
⊢ ( ◡ 𝑓 “ { ( 0g ‘ 𝑟 ) } ) |
17 |
4 10 16
|
ciun |
⊢ ∪ 𝑓 ∈ ( Monic1p ‘ ( 𝑟 ↾s 𝑠 ) ) ( ◡ 𝑓 “ { ( 0g ‘ 𝑟 ) } ) |
18 |
1 3 2 2 17
|
cmpo |
⊢ ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ∪ 𝑓 ∈ ( Monic1p ‘ ( 𝑟 ↾s 𝑠 ) ) ( ◡ 𝑓 “ { ( 0g ‘ 𝑟 ) } ) ) |
19 |
0 18
|
wceq |
⊢ IntgRing = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ∪ 𝑓 ∈ ( Monic1p ‘ ( 𝑟 ↾s 𝑠 ) ) ( ◡ 𝑓 “ { ( 0g ‘ 𝑟 ) } ) ) |