| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cirng |
⊢ IntgRing |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vs |
⊢ 𝑠 |
| 4 |
|
vf |
⊢ 𝑓 |
| 5 |
|
cmn1 |
⊢ Monic1p |
| 6 |
1
|
cv |
⊢ 𝑟 |
| 7 |
|
cress |
⊢ ↾s |
| 8 |
3
|
cv |
⊢ 𝑠 |
| 9 |
6 8 7
|
co |
⊢ ( 𝑟 ↾s 𝑠 ) |
| 10 |
9 5
|
cfv |
⊢ ( Monic1p ‘ ( 𝑟 ↾s 𝑠 ) ) |
| 11 |
|
ces1 |
⊢ evalSub1 |
| 12 |
6 8 11
|
co |
⊢ ( 𝑟 evalSub1 𝑠 ) |
| 13 |
4
|
cv |
⊢ 𝑓 |
| 14 |
13 12
|
cfv |
⊢ ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) |
| 15 |
14
|
ccnv |
⊢ ◡ ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) |
| 16 |
|
c0g |
⊢ 0g |
| 17 |
6 16
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
| 18 |
17
|
csn |
⊢ { ( 0g ‘ 𝑟 ) } |
| 19 |
15 18
|
cima |
⊢ ( ◡ ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g ‘ 𝑟 ) } ) |
| 20 |
4 10 19
|
ciun |
⊢ ∪ 𝑓 ∈ ( Monic1p ‘ ( 𝑟 ↾s 𝑠 ) ) ( ◡ ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g ‘ 𝑟 ) } ) |
| 21 |
1 3 2 2 20
|
cmpo |
⊢ ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ∪ 𝑓 ∈ ( Monic1p ‘ ( 𝑟 ↾s 𝑠 ) ) ( ◡ ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g ‘ 𝑟 ) } ) ) |
| 22 |
0 21
|
wceq |
⊢ IntgRing = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ∪ 𝑓 ∈ ( Monic1p ‘ ( 𝑟 ↾s 𝑠 ) ) ( ◡ ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g ‘ 𝑟 ) } ) ) |