Metamath Proof Explorer


Definition df-irng

Description: Define the subring of elements of r integral over s in a ring. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-irng IntgRing = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ 𝑓 ∈ ( Monic1p ‘ ( 𝑟s 𝑠 ) ) ( 𝑓 “ { ( 0g𝑟 ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 citr IntgRing
1 vr 𝑟
2 cvv V
3 vs 𝑠
4 vf 𝑓
5 cmn1 Monic1p
6 1 cv 𝑟
7 cress s
8 3 cv 𝑠
9 6 8 7 co ( 𝑟s 𝑠 )
10 9 5 cfv ( Monic1p ‘ ( 𝑟s 𝑠 ) )
11 4 cv 𝑓
12 11 ccnv 𝑓
13 c0g 0g
14 6 13 cfv ( 0g𝑟 )
15 14 csn { ( 0g𝑟 ) }
16 12 15 cima ( 𝑓 “ { ( 0g𝑟 ) } )
17 4 10 16 ciun 𝑓 ∈ ( Monic1p ‘ ( 𝑟s 𝑠 ) ) ( 𝑓 “ { ( 0g𝑟 ) } )
18 1 3 2 2 17 cmpo ( 𝑟 ∈ V , 𝑠 ∈ V ↦ 𝑓 ∈ ( Monic1p ‘ ( 𝑟s 𝑠 ) ) ( 𝑓 “ { ( 0g𝑟 ) } ) )
19 0 18 wceq IntgRing = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ 𝑓 ∈ ( Monic1p ‘ ( 𝑟s 𝑠 ) ) ( 𝑓 “ { ( 0g𝑟 ) } ) )