Metamath Proof Explorer


Definition df-irng

Description: Define the subring of elements of a ring r integral over a subset s . (Contributed by Mario Carneiro, 2-Dec-2014) (Revised by Thierry Arnoux, 28-Jan-2025)

Ref Expression
Assertion df-irng IntgRing = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ 𝑓 ∈ ( Monic1p ‘ ( 𝑟s 𝑠 ) ) ( ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g𝑟 ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cirng IntgRing
1 vr 𝑟
2 cvv V
3 vs 𝑠
4 vf 𝑓
5 cmn1 Monic1p
6 1 cv 𝑟
7 cress s
8 3 cv 𝑠
9 6 8 7 co ( 𝑟s 𝑠 )
10 9 5 cfv ( Monic1p ‘ ( 𝑟s 𝑠 ) )
11 ces1 evalSub1
12 6 8 11 co ( 𝑟 evalSub1 𝑠 )
13 4 cv 𝑓
14 13 12 cfv ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 )
15 14 ccnv ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 )
16 c0g 0g
17 6 16 cfv ( 0g𝑟 )
18 17 csn { ( 0g𝑟 ) }
19 15 18 cima ( ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g𝑟 ) } )
20 4 10 19 ciun 𝑓 ∈ ( Monic1p ‘ ( 𝑟s 𝑠 ) ) ( ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g𝑟 ) } )
21 1 3 2 2 20 cmpo ( 𝑟 ∈ V , 𝑠 ∈ V ↦ 𝑓 ∈ ( Monic1p ‘ ( 𝑟s 𝑠 ) ) ( ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g𝑟 ) } ) )
22 0 21 wceq IntgRing = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ 𝑓 ∈ ( Monic1p ‘ ( 𝑟s 𝑠 ) ) ( ( ( 𝑟 evalSub1 𝑠 ) ‘ 𝑓 ) “ { ( 0g𝑟 ) } ) )