Metamath Proof Explorer


Definition df-cplmet

Description: A function which completes the given metric space. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-cplmet cplMetSp = ( 𝑤 ∈ V ↦ ( ( 𝑤s ℕ ) ↾s ( Cau ‘ ( dist ‘ 𝑤 ) ) ) / 𝑟 ( Base ‘ 𝑟 ) / 𝑣 { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑔𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) ) } / 𝑒 ( ( 𝑟 /s 𝑒 ) sSet { ⟨ ( dist ‘ ndx ) , { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ∃ 𝑝𝑣𝑞𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } ⟩ } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccpms cplMetSp
1 vw 𝑤
2 cvv V
3 1 cv 𝑤
4 cpws s
5 cn
6 3 5 4 co ( 𝑤s ℕ )
7 cress s
8 ccau Cau
9 cds dist
10 3 9 cfv ( dist ‘ 𝑤 )
11 10 8 cfv ( Cau ‘ ( dist ‘ 𝑤 ) )
12 6 11 7 co ( ( 𝑤s ℕ ) ↾s ( Cau ‘ ( dist ‘ 𝑤 ) ) )
13 vr 𝑟
14 cbs Base
15 13 cv 𝑟
16 15 14 cfv ( Base ‘ 𝑟 )
17 vv 𝑣
18 vf 𝑓
19 vg 𝑔
20 18 cv 𝑓
21 19 cv 𝑔
22 20 21 cpr { 𝑓 , 𝑔 }
23 17 cv 𝑣
24 22 23 wss { 𝑓 , 𝑔 } ⊆ 𝑣
25 vx 𝑥
26 crp +
27 vj 𝑗
28 cz
29 cuz
30 27 cv 𝑗
31 30 29 cfv ( ℤ𝑗 )
32 20 31 cres ( 𝑓 ↾ ( ℤ𝑗 ) )
33 30 21 cfv ( 𝑔𝑗 )
34 cbl ball
35 10 34 cfv ( ball ‘ ( dist ‘ 𝑤 ) )
36 25 cv 𝑥
37 33 36 35 co ( ( 𝑔𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 )
38 31 37 32 wf ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑔𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 )
39 38 27 28 wrex 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑔𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 )
40 39 25 26 wral 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑔𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 )
41 24 40 wa ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑔𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) )
42 41 18 19 copab { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑔𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) ) }
43 ve 𝑒
44 cqus /s
45 43 cv 𝑒
46 15 45 44 co ( 𝑟 /s 𝑒 )
47 csts sSet
48 cnx ndx
49 48 9 cfv ( dist ‘ ndx )
50 vy 𝑦
51 vz 𝑧
52 vp 𝑝
53 vq 𝑞
54 52 cv 𝑝
55 54 45 cec [ 𝑝 ] 𝑒
56 36 55 wceq 𝑥 = [ 𝑝 ] 𝑒
57 50 cv 𝑦
58 53 cv 𝑞
59 58 45 cec [ 𝑞 ] 𝑒
60 57 59 wceq 𝑦 = [ 𝑞 ] 𝑒
61 56 60 wa ( 𝑥 = [ 𝑝 ] 𝑒𝑦 = [ 𝑞 ] 𝑒 )
62 15 9 cfv ( dist ‘ 𝑟 )
63 62 cof f ( dist ‘ 𝑟 )
64 54 58 63 co ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 )
65 cli
66 51 cv 𝑧
67 64 66 65 wbr ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧
68 61 67 wa ( ( 𝑥 = [ 𝑝 ] 𝑒𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 )
69 68 53 23 wrex 𝑞𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 )
70 69 52 23 wrex 𝑝𝑣𝑞𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 )
71 70 25 50 51 coprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ∃ 𝑝𝑣𝑞𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) }
72 49 71 cop ⟨ ( dist ‘ ndx ) , { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ∃ 𝑝𝑣𝑞𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } ⟩
73 72 csn { ⟨ ( dist ‘ ndx ) , { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ∃ 𝑝𝑣𝑞𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } ⟩ }
74 46 73 47 co ( ( 𝑟 /s 𝑒 ) sSet { ⟨ ( dist ‘ ndx ) , { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ∃ 𝑝𝑣𝑞𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } ⟩ } )
75 43 42 74 csb { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑔𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) ) } / 𝑒 ( ( 𝑟 /s 𝑒 ) sSet { ⟨ ( dist ‘ ndx ) , { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ∃ 𝑝𝑣𝑞𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } ⟩ } )
76 17 16 75 csb ( Base ‘ 𝑟 ) / 𝑣 { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑔𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) ) } / 𝑒 ( ( 𝑟 /s 𝑒 ) sSet { ⟨ ( dist ‘ ndx ) , { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ∃ 𝑝𝑣𝑞𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } ⟩ } )
77 13 12 76 csb ( ( 𝑤s ℕ ) ↾s ( Cau ‘ ( dist ‘ 𝑤 ) ) ) / 𝑟 ( Base ‘ 𝑟 ) / 𝑣 { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑔𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) ) } / 𝑒 ( ( 𝑟 /s 𝑒 ) sSet { ⟨ ( dist ‘ ndx ) , { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ∃ 𝑝𝑣𝑞𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } ⟩ } )
78 1 2 77 cmpt ( 𝑤 ∈ V ↦ ( ( 𝑤s ℕ ) ↾s ( Cau ‘ ( dist ‘ 𝑤 ) ) ) / 𝑟 ( Base ‘ 𝑟 ) / 𝑣 { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑔𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) ) } / 𝑒 ( ( 𝑟 /s 𝑒 ) sSet { ⟨ ( dist ‘ ndx ) , { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ∃ 𝑝𝑣𝑞𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } ⟩ } ) )
79 0 78 wceq cplMetSp = ( 𝑤 ∈ V ↦ ( ( 𝑤s ℕ ) ↾s ( Cau ‘ ( dist ‘ 𝑤 ) ) ) / 𝑟 ( Base ‘ 𝑟 ) / 𝑣 { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑔𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) ) } / 𝑒 ( ( 𝑟 /s 𝑒 ) sSet { ⟨ ( dist ‘ ndx ) , { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ∃ 𝑝𝑣𝑞𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } ⟩ } ) )