| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccpms |
⊢ cplMetSp |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cvv |
⊢ V |
| 3 |
1
|
cv |
⊢ 𝑤 |
| 4 |
|
cpws |
⊢ ↑s |
| 5 |
|
cn |
⊢ ℕ |
| 6 |
3 5 4
|
co |
⊢ ( 𝑤 ↑s ℕ ) |
| 7 |
|
cress |
⊢ ↾s |
| 8 |
|
ccau |
⊢ Cau |
| 9 |
|
cds |
⊢ dist |
| 10 |
3 9
|
cfv |
⊢ ( dist ‘ 𝑤 ) |
| 11 |
10 8
|
cfv |
⊢ ( Cau ‘ ( dist ‘ 𝑤 ) ) |
| 12 |
6 11 7
|
co |
⊢ ( ( 𝑤 ↑s ℕ ) ↾s ( Cau ‘ ( dist ‘ 𝑤 ) ) ) |
| 13 |
|
vr |
⊢ 𝑟 |
| 14 |
|
cbs |
⊢ Base |
| 15 |
13
|
cv |
⊢ 𝑟 |
| 16 |
15 14
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 17 |
|
vv |
⊢ 𝑣 |
| 18 |
|
vf |
⊢ 𝑓 |
| 19 |
|
vg |
⊢ 𝑔 |
| 20 |
18
|
cv |
⊢ 𝑓 |
| 21 |
19
|
cv |
⊢ 𝑔 |
| 22 |
20 21
|
cpr |
⊢ { 𝑓 , 𝑔 } |
| 23 |
17
|
cv |
⊢ 𝑣 |
| 24 |
22 23
|
wss |
⊢ { 𝑓 , 𝑔 } ⊆ 𝑣 |
| 25 |
|
vx |
⊢ 𝑥 |
| 26 |
|
crp |
⊢ ℝ+ |
| 27 |
|
vj |
⊢ 𝑗 |
| 28 |
|
cz |
⊢ ℤ |
| 29 |
|
cuz |
⊢ ℤ≥ |
| 30 |
27
|
cv |
⊢ 𝑗 |
| 31 |
30 29
|
cfv |
⊢ ( ℤ≥ ‘ 𝑗 ) |
| 32 |
20 31
|
cres |
⊢ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) |
| 33 |
30 21
|
cfv |
⊢ ( 𝑔 ‘ 𝑗 ) |
| 34 |
|
cbl |
⊢ ball |
| 35 |
10 34
|
cfv |
⊢ ( ball ‘ ( dist ‘ 𝑤 ) ) |
| 36 |
25
|
cv |
⊢ 𝑥 |
| 37 |
33 36 35
|
co |
⊢ ( ( 𝑔 ‘ 𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) |
| 38 |
31 37 32
|
wf |
⊢ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑔 ‘ 𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) |
| 39 |
38 27 28
|
wrex |
⊢ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑔 ‘ 𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) |
| 40 |
39 25 26
|
wral |
⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑔 ‘ 𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) |
| 41 |
24 40
|
wa |
⊢ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑔 ‘ 𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) ) |
| 42 |
41 18 19
|
copab |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑔 ‘ 𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) ) } |
| 43 |
|
ve |
⊢ 𝑒 |
| 44 |
|
cqus |
⊢ /s |
| 45 |
43
|
cv |
⊢ 𝑒 |
| 46 |
15 45 44
|
co |
⊢ ( 𝑟 /s 𝑒 ) |
| 47 |
|
csts |
⊢ sSet |
| 48 |
|
cnx |
⊢ ndx |
| 49 |
48 9
|
cfv |
⊢ ( dist ‘ ndx ) |
| 50 |
|
vy |
⊢ 𝑦 |
| 51 |
|
vz |
⊢ 𝑧 |
| 52 |
|
vp |
⊢ 𝑝 |
| 53 |
|
vq |
⊢ 𝑞 |
| 54 |
52
|
cv |
⊢ 𝑝 |
| 55 |
54 45
|
cec |
⊢ [ 𝑝 ] 𝑒 |
| 56 |
36 55
|
wceq |
⊢ 𝑥 = [ 𝑝 ] 𝑒 |
| 57 |
50
|
cv |
⊢ 𝑦 |
| 58 |
53
|
cv |
⊢ 𝑞 |
| 59 |
58 45
|
cec |
⊢ [ 𝑞 ] 𝑒 |
| 60 |
57 59
|
wceq |
⊢ 𝑦 = [ 𝑞 ] 𝑒 |
| 61 |
56 60
|
wa |
⊢ ( 𝑥 = [ 𝑝 ] 𝑒 ∧ 𝑦 = [ 𝑞 ] 𝑒 ) |
| 62 |
15 9
|
cfv |
⊢ ( dist ‘ 𝑟 ) |
| 63 |
62
|
cof |
⊢ ∘f ( dist ‘ 𝑟 ) |
| 64 |
54 58 63
|
co |
⊢ ( 𝑝 ∘f ( dist ‘ 𝑟 ) 𝑞 ) |
| 65 |
|
cli |
⊢ ⇝ |
| 66 |
51
|
cv |
⊢ 𝑧 |
| 67 |
64 66 65
|
wbr |
⊢ ( 𝑝 ∘f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 |
| 68 |
61 67
|
wa |
⊢ ( ( 𝑥 = [ 𝑝 ] 𝑒 ∧ 𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝 ∘f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) |
| 69 |
68 53 23
|
wrex |
⊢ ∃ 𝑞 ∈ 𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒 ∧ 𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝 ∘f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) |
| 70 |
69 52 23
|
wrex |
⊢ ∃ 𝑝 ∈ 𝑣 ∃ 𝑞 ∈ 𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒 ∧ 𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝 ∘f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) |
| 71 |
70 25 50 51
|
coprab |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝑣 ∃ 𝑞 ∈ 𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒 ∧ 𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝 ∘f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } |
| 72 |
49 71
|
cop |
⊢ 〈 ( dist ‘ ndx ) , { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝑣 ∃ 𝑞 ∈ 𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒 ∧ 𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝 ∘f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } 〉 |
| 73 |
72
|
csn |
⊢ { 〈 ( dist ‘ ndx ) , { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝑣 ∃ 𝑞 ∈ 𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒 ∧ 𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝 ∘f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } 〉 } |
| 74 |
46 73 47
|
co |
⊢ ( ( 𝑟 /s 𝑒 ) sSet { 〈 ( dist ‘ ndx ) , { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝑣 ∃ 𝑞 ∈ 𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒 ∧ 𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝 ∘f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } 〉 } ) |
| 75 |
43 42 74
|
csb |
⊢ ⦋ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑔 ‘ 𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) ) } / 𝑒 ⦌ ( ( 𝑟 /s 𝑒 ) sSet { 〈 ( dist ‘ ndx ) , { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝑣 ∃ 𝑞 ∈ 𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒 ∧ 𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝 ∘f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } 〉 } ) |
| 76 |
17 16 75
|
csb |
⊢ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑔 ‘ 𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) ) } / 𝑒 ⦌ ( ( 𝑟 /s 𝑒 ) sSet { 〈 ( dist ‘ ndx ) , { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝑣 ∃ 𝑞 ∈ 𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒 ∧ 𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝 ∘f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } 〉 } ) |
| 77 |
13 12 76
|
csb |
⊢ ⦋ ( ( 𝑤 ↑s ℕ ) ↾s ( Cau ‘ ( dist ‘ 𝑤 ) ) ) / 𝑟 ⦌ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑔 ‘ 𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) ) } / 𝑒 ⦌ ( ( 𝑟 /s 𝑒 ) sSet { 〈 ( dist ‘ ndx ) , { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝑣 ∃ 𝑞 ∈ 𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒 ∧ 𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝 ∘f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } 〉 } ) |
| 78 |
1 2 77
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ ⦋ ( ( 𝑤 ↑s ℕ ) ↾s ( Cau ‘ ( dist ‘ 𝑤 ) ) ) / 𝑟 ⦌ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑔 ‘ 𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) ) } / 𝑒 ⦌ ( ( 𝑟 /s 𝑒 ) sSet { 〈 ( dist ‘ ndx ) , { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝑣 ∃ 𝑞 ∈ 𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒 ∧ 𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝 ∘f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } 〉 } ) ) |
| 79 |
0 78
|
wceq |
⊢ cplMetSp = ( 𝑤 ∈ V ↦ ⦋ ( ( 𝑤 ↑s ℕ ) ↾s ( Cau ‘ ( dist ‘ 𝑤 ) ) ) / 𝑟 ⦌ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑔 ‘ 𝑗 ) ( ball ‘ ( dist ‘ 𝑤 ) ) 𝑥 ) ) } / 𝑒 ⦌ ( ( 𝑟 /s 𝑒 ) sSet { 〈 ( dist ‘ ndx ) , { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝑣 ∃ 𝑞 ∈ 𝑣 ( ( 𝑥 = [ 𝑝 ] 𝑒 ∧ 𝑦 = [ 𝑞 ] 𝑒 ) ∧ ( 𝑝 ∘f ( dist ‘ 𝑟 ) 𝑞 ) ⇝ 𝑧 ) } 〉 } ) ) |