| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccpms |
|- cplMetSp |
| 1 |
|
vw |
|- w |
| 2 |
|
cvv |
|- _V |
| 3 |
1
|
cv |
|- w |
| 4 |
|
cpws |
|- ^s |
| 5 |
|
cn |
|- NN |
| 6 |
3 5 4
|
co |
|- ( w ^s NN ) |
| 7 |
|
cress |
|- |`s |
| 8 |
|
ccau |
|- Cau |
| 9 |
|
cds |
|- dist |
| 10 |
3 9
|
cfv |
|- ( dist ` w ) |
| 11 |
10 8
|
cfv |
|- ( Cau ` ( dist ` w ) ) |
| 12 |
6 11 7
|
co |
|- ( ( w ^s NN ) |`s ( Cau ` ( dist ` w ) ) ) |
| 13 |
|
vr |
|- r |
| 14 |
|
cbs |
|- Base |
| 15 |
13
|
cv |
|- r |
| 16 |
15 14
|
cfv |
|- ( Base ` r ) |
| 17 |
|
vv |
|- v |
| 18 |
|
vf |
|- f |
| 19 |
|
vg |
|- g |
| 20 |
18
|
cv |
|- f |
| 21 |
19
|
cv |
|- g |
| 22 |
20 21
|
cpr |
|- { f , g } |
| 23 |
17
|
cv |
|- v |
| 24 |
22 23
|
wss |
|- { f , g } C_ v |
| 25 |
|
vx |
|- x |
| 26 |
|
crp |
|- RR+ |
| 27 |
|
vj |
|- j |
| 28 |
|
cz |
|- ZZ |
| 29 |
|
cuz |
|- ZZ>= |
| 30 |
27
|
cv |
|- j |
| 31 |
30 29
|
cfv |
|- ( ZZ>= ` j ) |
| 32 |
20 31
|
cres |
|- ( f |` ( ZZ>= ` j ) ) |
| 33 |
30 21
|
cfv |
|- ( g ` j ) |
| 34 |
|
cbl |
|- ball |
| 35 |
10 34
|
cfv |
|- ( ball ` ( dist ` w ) ) |
| 36 |
25
|
cv |
|- x |
| 37 |
33 36 35
|
co |
|- ( ( g ` j ) ( ball ` ( dist ` w ) ) x ) |
| 38 |
31 37 32
|
wf |
|- ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( g ` j ) ( ball ` ( dist ` w ) ) x ) |
| 39 |
38 27 28
|
wrex |
|- E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( g ` j ) ( ball ` ( dist ` w ) ) x ) |
| 40 |
39 25 26
|
wral |
|- A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( g ` j ) ( ball ` ( dist ` w ) ) x ) |
| 41 |
24 40
|
wa |
|- ( { f , g } C_ v /\ A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( g ` j ) ( ball ` ( dist ` w ) ) x ) ) |
| 42 |
41 18 19
|
copab |
|- { <. f , g >. | ( { f , g } C_ v /\ A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( g ` j ) ( ball ` ( dist ` w ) ) x ) ) } |
| 43 |
|
ve |
|- e |
| 44 |
|
cqus |
|- /s |
| 45 |
43
|
cv |
|- e |
| 46 |
15 45 44
|
co |
|- ( r /s e ) |
| 47 |
|
csts |
|- sSet |
| 48 |
|
cnx |
|- ndx |
| 49 |
48 9
|
cfv |
|- ( dist ` ndx ) |
| 50 |
|
vy |
|- y |
| 51 |
|
vz |
|- z |
| 52 |
|
vp |
|- p |
| 53 |
|
vq |
|- q |
| 54 |
52
|
cv |
|- p |
| 55 |
54 45
|
cec |
|- [ p ] e |
| 56 |
36 55
|
wceq |
|- x = [ p ] e |
| 57 |
50
|
cv |
|- y |
| 58 |
53
|
cv |
|- q |
| 59 |
58 45
|
cec |
|- [ q ] e |
| 60 |
57 59
|
wceq |
|- y = [ q ] e |
| 61 |
56 60
|
wa |
|- ( x = [ p ] e /\ y = [ q ] e ) |
| 62 |
15 9
|
cfv |
|- ( dist ` r ) |
| 63 |
62
|
cof |
|- oF ( dist ` r ) |
| 64 |
54 58 63
|
co |
|- ( p oF ( dist ` r ) q ) |
| 65 |
|
cli |
|- ~~> |
| 66 |
51
|
cv |
|- z |
| 67 |
64 66 65
|
wbr |
|- ( p oF ( dist ` r ) q ) ~~> z |
| 68 |
61 67
|
wa |
|- ( ( x = [ p ] e /\ y = [ q ] e ) /\ ( p oF ( dist ` r ) q ) ~~> z ) |
| 69 |
68 53 23
|
wrex |
|- E. q e. v ( ( x = [ p ] e /\ y = [ q ] e ) /\ ( p oF ( dist ` r ) q ) ~~> z ) |
| 70 |
69 52 23
|
wrex |
|- E. p e. v E. q e. v ( ( x = [ p ] e /\ y = [ q ] e ) /\ ( p oF ( dist ` r ) q ) ~~> z ) |
| 71 |
70 25 50 51
|
coprab |
|- { <. <. x , y >. , z >. | E. p e. v E. q e. v ( ( x = [ p ] e /\ y = [ q ] e ) /\ ( p oF ( dist ` r ) q ) ~~> z ) } |
| 72 |
49 71
|
cop |
|- <. ( dist ` ndx ) , { <. <. x , y >. , z >. | E. p e. v E. q e. v ( ( x = [ p ] e /\ y = [ q ] e ) /\ ( p oF ( dist ` r ) q ) ~~> z ) } >. |
| 73 |
72
|
csn |
|- { <. ( dist ` ndx ) , { <. <. x , y >. , z >. | E. p e. v E. q e. v ( ( x = [ p ] e /\ y = [ q ] e ) /\ ( p oF ( dist ` r ) q ) ~~> z ) } >. } |
| 74 |
46 73 47
|
co |
|- ( ( r /s e ) sSet { <. ( dist ` ndx ) , { <. <. x , y >. , z >. | E. p e. v E. q e. v ( ( x = [ p ] e /\ y = [ q ] e ) /\ ( p oF ( dist ` r ) q ) ~~> z ) } >. } ) |
| 75 |
43 42 74
|
csb |
|- [_ { <. f , g >. | ( { f , g } C_ v /\ A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( g ` j ) ( ball ` ( dist ` w ) ) x ) ) } / e ]_ ( ( r /s e ) sSet { <. ( dist ` ndx ) , { <. <. x , y >. , z >. | E. p e. v E. q e. v ( ( x = [ p ] e /\ y = [ q ] e ) /\ ( p oF ( dist ` r ) q ) ~~> z ) } >. } ) |
| 76 |
17 16 75
|
csb |
|- [_ ( Base ` r ) / v ]_ [_ { <. f , g >. | ( { f , g } C_ v /\ A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( g ` j ) ( ball ` ( dist ` w ) ) x ) ) } / e ]_ ( ( r /s e ) sSet { <. ( dist ` ndx ) , { <. <. x , y >. , z >. | E. p e. v E. q e. v ( ( x = [ p ] e /\ y = [ q ] e ) /\ ( p oF ( dist ` r ) q ) ~~> z ) } >. } ) |
| 77 |
13 12 76
|
csb |
|- [_ ( ( w ^s NN ) |`s ( Cau ` ( dist ` w ) ) ) / r ]_ [_ ( Base ` r ) / v ]_ [_ { <. f , g >. | ( { f , g } C_ v /\ A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( g ` j ) ( ball ` ( dist ` w ) ) x ) ) } / e ]_ ( ( r /s e ) sSet { <. ( dist ` ndx ) , { <. <. x , y >. , z >. | E. p e. v E. q e. v ( ( x = [ p ] e /\ y = [ q ] e ) /\ ( p oF ( dist ` r ) q ) ~~> z ) } >. } ) |
| 78 |
1 2 77
|
cmpt |
|- ( w e. _V |-> [_ ( ( w ^s NN ) |`s ( Cau ` ( dist ` w ) ) ) / r ]_ [_ ( Base ` r ) / v ]_ [_ { <. f , g >. | ( { f , g } C_ v /\ A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( g ` j ) ( ball ` ( dist ` w ) ) x ) ) } / e ]_ ( ( r /s e ) sSet { <. ( dist ` ndx ) , { <. <. x , y >. , z >. | E. p e. v E. q e. v ( ( x = [ p ] e /\ y = [ q ] e ) /\ ( p oF ( dist ` r ) q ) ~~> z ) } >. } ) ) |
| 79 |
0 78
|
wceq |
|- cplMetSp = ( w e. _V |-> [_ ( ( w ^s NN ) |`s ( Cau ` ( dist ` w ) ) ) / r ]_ [_ ( Base ` r ) / v ]_ [_ { <. f , g >. | ( { f , g } C_ v /\ A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( g ` j ) ( ball ` ( dist ` w ) ) x ) ) } / e ]_ ( ( r /s e ) sSet { <. ( dist ` ndx ) , { <. <. x , y >. , z >. | E. p e. v E. q e. v ( ( x = [ p ] e /\ y = [ q ] e ) /\ ( p oF ( dist ` r ) q ) ~~> z ) } >. } ) ) |