Metamath Proof Explorer


Definition df-cplmet

Description: A function which completes the given metric space. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-cplmet cplMetSp = w V w 𝑠 𝑠 Cau dist w / r Base r / v f g | f g v x + j f j : j g j ball dist w x / e r / 𝑠 e sSet dist ndx x y z | p v q v x = p e y = q e p dist r f q z

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccpms class cplMetSp
1 vw setvar w
2 cvv class V
3 1 cv setvar w
4 cpws class 𝑠
5 cn class
6 3 5 4 co class w 𝑠
7 cress class 𝑠
8 ccau class Cau
9 cds class dist
10 3 9 cfv class dist w
11 10 8 cfv class Cau dist w
12 6 11 7 co class w 𝑠 𝑠 Cau dist w
13 vr setvar r
14 cbs class Base
15 13 cv setvar r
16 15 14 cfv class Base r
17 vv setvar v
18 vf setvar f
19 vg setvar g
20 18 cv setvar f
21 19 cv setvar g
22 20 21 cpr class f g
23 17 cv setvar v
24 22 23 wss wff f g v
25 vx setvar x
26 crp class +
27 vj setvar j
28 cz class
29 cuz class
30 27 cv setvar j
31 30 29 cfv class j
32 20 31 cres class f j
33 30 21 cfv class g j
34 cbl class ball
35 10 34 cfv class ball dist w
36 25 cv setvar x
37 33 36 35 co class g j ball dist w x
38 31 37 32 wf wff f j : j g j ball dist w x
39 38 27 28 wrex wff j f j : j g j ball dist w x
40 39 25 26 wral wff x + j f j : j g j ball dist w x
41 24 40 wa wff f g v x + j f j : j g j ball dist w x
42 41 18 19 copab class f g | f g v x + j f j : j g j ball dist w x
43 ve setvar e
44 cqus class / 𝑠
45 43 cv setvar e
46 15 45 44 co class r / 𝑠 e
47 csts class sSet
48 cnx class ndx
49 48 9 cfv class dist ndx
50 vy setvar y
51 vz setvar z
52 vp setvar p
53 vq setvar q
54 52 cv setvar p
55 54 45 cec class p e
56 36 55 wceq wff x = p e
57 50 cv setvar y
58 53 cv setvar q
59 58 45 cec class q e
60 57 59 wceq wff y = q e
61 56 60 wa wff x = p e y = q e
62 15 9 cfv class dist r
63 62 cof class f dist r
64 54 58 63 co class p dist r f q
65 cli class
66 51 cv setvar z
67 64 66 65 wbr wff p dist r f q z
68 61 67 wa wff x = p e y = q e p dist r f q z
69 68 53 23 wrex wff q v x = p e y = q e p dist r f q z
70 69 52 23 wrex wff p v q v x = p e y = q e p dist r f q z
71 70 25 50 51 coprab class x y z | p v q v x = p e y = q e p dist r f q z
72 49 71 cop class dist ndx x y z | p v q v x = p e y = q e p dist r f q z
73 72 csn class dist ndx x y z | p v q v x = p e y = q e p dist r f q z
74 46 73 47 co class r / 𝑠 e sSet dist ndx x y z | p v q v x = p e y = q e p dist r f q z
75 43 42 74 csb class f g | f g v x + j f j : j g j ball dist w x / e r / 𝑠 e sSet dist ndx x y z | p v q v x = p e y = q e p dist r f q z
76 17 16 75 csb class Base r / v f g | f g v x + j f j : j g j ball dist w x / e r / 𝑠 e sSet dist ndx x y z | p v q v x = p e y = q e p dist r f q z
77 13 12 76 csb class w 𝑠 𝑠 Cau dist w / r Base r / v f g | f g v x + j f j : j g j ball dist w x / e r / 𝑠 e sSet dist ndx x y z | p v q v x = p e y = q e p dist r f q z
78 1 2 77 cmpt class w V w 𝑠 𝑠 Cau dist w / r Base r / v f g | f g v x + j f j : j g j ball dist w x / e r / 𝑠 e sSet dist ndx x y z | p v q v x = p e y = q e p dist r f q z
79 0 78 wceq wff cplMetSp = w V w 𝑠 𝑠 Cau dist w / r Base r / v f g | f g v x + j f j : j g j ball dist w x / e r / 𝑠 e sSet dist ndx x y z | p v q v x = p e y = q e p dist r f q z