Metamath Proof Explorer


Definition df-cau

Description: Define the set of Cauchy sequences on a given extended metric space. (Contributed by NM, 8-Sep-2006)

Ref Expression
Assertion df-cau Cau=dran∞Metfdomdomd𝑝𝑚|x+jfj:jfjballdx

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccau classCau
1 vd setvard
2 cxmet class∞Met
3 2 crn classran∞Met
4 3 cuni classran∞Met
5 vf setvarf
6 1 cv setvard
7 6 cdm classdomd
8 7 cdm classdomdomd
9 cpm class𝑝𝑚
10 cc class
11 8 10 9 co classdomdomd𝑝𝑚
12 vx setvarx
13 crp class+
14 vj setvarj
15 cz class
16 5 cv setvarf
17 cuz class
18 14 cv setvarj
19 18 17 cfv classj
20 16 19 cres classfj
21 18 16 cfv classfj
22 cbl classball
23 6 22 cfv classballd
24 12 cv setvarx
25 21 24 23 co classfjballdx
26 19 25 20 wf wfffj:jfjballdx
27 26 14 15 wrex wffjfj:jfjballdx
28 27 12 13 wral wffx+jfj:jfjballdx
29 28 5 11 crab classfdomdomd𝑝𝑚|x+jfj:jfjballdx
30 1 4 29 cmpt classdran∞Metfdomdomd𝑝𝑚|x+jfj:jfjballdx
31 0 30 wceq wffCau=dran∞Metfdomdomd𝑝𝑚|x+jfj:jfjballdx