Step |
Hyp |
Ref |
Expression |
0 |
|
chlb |
|- HomLimB |
1 |
|
vf |
|- f |
2 |
|
cvv |
|- _V |
3 |
|
vn |
|- n |
4 |
|
cn |
|- NN |
5 |
3
|
cv |
|- n |
6 |
5
|
csn |
|- { n } |
7 |
1
|
cv |
|- f |
8 |
5 7
|
cfv |
|- ( f ` n ) |
9 |
8
|
cdm |
|- dom ( f ` n ) |
10 |
6 9
|
cxp |
|- ( { n } X. dom ( f ` n ) ) |
11 |
3 4 10
|
ciun |
|- U_ n e. NN ( { n } X. dom ( f ` n ) ) |
12 |
|
vv |
|- v |
13 |
|
vs |
|- s |
14 |
13
|
cv |
|- s |
15 |
12
|
cv |
|- v |
16 |
15 14
|
wer |
|- s Er v |
17 |
|
vx |
|- x |
18 |
|
c1st |
|- 1st |
19 |
17
|
cv |
|- x |
20 |
19 18
|
cfv |
|- ( 1st ` x ) |
21 |
|
caddc |
|- + |
22 |
|
c1 |
|- 1 |
23 |
20 22 21
|
co |
|- ( ( 1st ` x ) + 1 ) |
24 |
20 7
|
cfv |
|- ( f ` ( 1st ` x ) ) |
25 |
|
c2nd |
|- 2nd |
26 |
19 25
|
cfv |
|- ( 2nd ` x ) |
27 |
26 24
|
cfv |
|- ( ( f ` ( 1st ` x ) ) ` ( 2nd ` x ) ) |
28 |
23 27
|
cop |
|- <. ( ( 1st ` x ) + 1 ) , ( ( f ` ( 1st ` x ) ) ` ( 2nd ` x ) ) >. |
29 |
17 15 28
|
cmpt |
|- ( x e. v |-> <. ( ( 1st ` x ) + 1 ) , ( ( f ` ( 1st ` x ) ) ` ( 2nd ` x ) ) >. ) |
30 |
29 14
|
wss |
|- ( x e. v |-> <. ( ( 1st ` x ) + 1 ) , ( ( f ` ( 1st ` x ) ) ` ( 2nd ` x ) ) >. ) C_ s |
31 |
16 30
|
wa |
|- ( s Er v /\ ( x e. v |-> <. ( ( 1st ` x ) + 1 ) , ( ( f ` ( 1st ` x ) ) ` ( 2nd ` x ) ) >. ) C_ s ) |
32 |
31 13
|
cab |
|- { s | ( s Er v /\ ( x e. v |-> <. ( ( 1st ` x ) + 1 ) , ( ( f ` ( 1st ` x ) ) ` ( 2nd ` x ) ) >. ) C_ s ) } |
33 |
32
|
cint |
|- |^| { s | ( s Er v /\ ( x e. v |-> <. ( ( 1st ` x ) + 1 ) , ( ( f ` ( 1st ` x ) ) ` ( 2nd ` x ) ) >. ) C_ s ) } |
34 |
|
ve |
|- e |
35 |
34
|
cv |
|- e |
36 |
15 35
|
cqs |
|- ( v /. e ) |
37 |
5 19
|
cop |
|- <. n , x >. |
38 |
37 35
|
cec |
|- [ <. n , x >. ] e |
39 |
17 9 38
|
cmpt |
|- ( x e. dom ( f ` n ) |-> [ <. n , x >. ] e ) |
40 |
3 4 39
|
cmpt |
|- ( n e. NN |-> ( x e. dom ( f ` n ) |-> [ <. n , x >. ] e ) ) |
41 |
36 40
|
cop |
|- <. ( v /. e ) , ( n e. NN |-> ( x e. dom ( f ` n ) |-> [ <. n , x >. ] e ) ) >. |
42 |
34 33 41
|
csb |
|- [_ |^| { s | ( s Er v /\ ( x e. v |-> <. ( ( 1st ` x ) + 1 ) , ( ( f ` ( 1st ` x ) ) ` ( 2nd ` x ) ) >. ) C_ s ) } / e ]_ <. ( v /. e ) , ( n e. NN |-> ( x e. dom ( f ` n ) |-> [ <. n , x >. ] e ) ) >. |
43 |
12 11 42
|
csb |
|- [_ U_ n e. NN ( { n } X. dom ( f ` n ) ) / v ]_ [_ |^| { s | ( s Er v /\ ( x e. v |-> <. ( ( 1st ` x ) + 1 ) , ( ( f ` ( 1st ` x ) ) ` ( 2nd ` x ) ) >. ) C_ s ) } / e ]_ <. ( v /. e ) , ( n e. NN |-> ( x e. dom ( f ` n ) |-> [ <. n , x >. ] e ) ) >. |
44 |
1 2 43
|
cmpt |
|- ( f e. _V |-> [_ U_ n e. NN ( { n } X. dom ( f ` n ) ) / v ]_ [_ |^| { s | ( s Er v /\ ( x e. v |-> <. ( ( 1st ` x ) + 1 ) , ( ( f ` ( 1st ` x ) ) ` ( 2nd ` x ) ) >. ) C_ s ) } / e ]_ <. ( v /. e ) , ( n e. NN |-> ( x e. dom ( f ` n ) |-> [ <. n , x >. ] e ) ) >. ) |
45 |
0 44
|
wceq |
|- HomLimB = ( f e. _V |-> [_ U_ n e. NN ( { n } X. dom ( f ` n ) ) / v ]_ [_ |^| { s | ( s Er v /\ ( x e. v |-> <. ( ( 1st ` x ) + 1 ) , ( ( f ` ( 1st ` x ) ) ` ( 2nd ` x ) ) >. ) C_ s ) } / e ]_ <. ( v /. e ) , ( n e. NN |-> ( x e. dom ( f ` n ) |-> [ <. n , x >. ] e ) ) >. ) |