Step |
Hyp |
Ref |
Expression |
0 |
|
chlb |
⊢ HomLimB |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cvv |
⊢ V |
3 |
|
vn |
⊢ 𝑛 |
4 |
|
cn |
⊢ ℕ |
5 |
3
|
cv |
⊢ 𝑛 |
6 |
5
|
csn |
⊢ { 𝑛 } |
7 |
1
|
cv |
⊢ 𝑓 |
8 |
5 7
|
cfv |
⊢ ( 𝑓 ‘ 𝑛 ) |
9 |
8
|
cdm |
⊢ dom ( 𝑓 ‘ 𝑛 ) |
10 |
6 9
|
cxp |
⊢ ( { 𝑛 } × dom ( 𝑓 ‘ 𝑛 ) ) |
11 |
3 4 10
|
ciun |
⊢ ∪ 𝑛 ∈ ℕ ( { 𝑛 } × dom ( 𝑓 ‘ 𝑛 ) ) |
12 |
|
vv |
⊢ 𝑣 |
13 |
|
vs |
⊢ 𝑠 |
14 |
13
|
cv |
⊢ 𝑠 |
15 |
12
|
cv |
⊢ 𝑣 |
16 |
15 14
|
wer |
⊢ 𝑠 Er 𝑣 |
17 |
|
vx |
⊢ 𝑥 |
18 |
|
c1st |
⊢ 1st |
19 |
17
|
cv |
⊢ 𝑥 |
20 |
19 18
|
cfv |
⊢ ( 1st ‘ 𝑥 ) |
21 |
|
caddc |
⊢ + |
22 |
|
c1 |
⊢ 1 |
23 |
20 22 21
|
co |
⊢ ( ( 1st ‘ 𝑥 ) + 1 ) |
24 |
20 7
|
cfv |
⊢ ( 𝑓 ‘ ( 1st ‘ 𝑥 ) ) |
25 |
|
c2nd |
⊢ 2nd |
26 |
19 25
|
cfv |
⊢ ( 2nd ‘ 𝑥 ) |
27 |
26 24
|
cfv |
⊢ ( ( 𝑓 ‘ ( 1st ‘ 𝑥 ) ) ‘ ( 2nd ‘ 𝑥 ) ) |
28 |
23 27
|
cop |
⊢ 〈 ( ( 1st ‘ 𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑥 ) ) ‘ ( 2nd ‘ 𝑥 ) ) 〉 |
29 |
17 15 28
|
cmpt |
⊢ ( 𝑥 ∈ 𝑣 ↦ 〈 ( ( 1st ‘ 𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑥 ) ) ‘ ( 2nd ‘ 𝑥 ) ) 〉 ) |
30 |
29 14
|
wss |
⊢ ( 𝑥 ∈ 𝑣 ↦ 〈 ( ( 1st ‘ 𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑥 ) ) ‘ ( 2nd ‘ 𝑥 ) ) 〉 ) ⊆ 𝑠 |
31 |
16 30
|
wa |
⊢ ( 𝑠 Er 𝑣 ∧ ( 𝑥 ∈ 𝑣 ↦ 〈 ( ( 1st ‘ 𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑥 ) ) ‘ ( 2nd ‘ 𝑥 ) ) 〉 ) ⊆ 𝑠 ) |
32 |
31 13
|
cab |
⊢ { 𝑠 ∣ ( 𝑠 Er 𝑣 ∧ ( 𝑥 ∈ 𝑣 ↦ 〈 ( ( 1st ‘ 𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑥 ) ) ‘ ( 2nd ‘ 𝑥 ) ) 〉 ) ⊆ 𝑠 ) } |
33 |
32
|
cint |
⊢ ∩ { 𝑠 ∣ ( 𝑠 Er 𝑣 ∧ ( 𝑥 ∈ 𝑣 ↦ 〈 ( ( 1st ‘ 𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑥 ) ) ‘ ( 2nd ‘ 𝑥 ) ) 〉 ) ⊆ 𝑠 ) } |
34 |
|
ve |
⊢ 𝑒 |
35 |
34
|
cv |
⊢ 𝑒 |
36 |
15 35
|
cqs |
⊢ ( 𝑣 / 𝑒 ) |
37 |
5 19
|
cop |
⊢ 〈 𝑛 , 𝑥 〉 |
38 |
37 35
|
cec |
⊢ [ 〈 𝑛 , 𝑥 〉 ] 𝑒 |
39 |
17 9 38
|
cmpt |
⊢ ( 𝑥 ∈ dom ( 𝑓 ‘ 𝑛 ) ↦ [ 〈 𝑛 , 𝑥 〉 ] 𝑒 ) |
40 |
3 4 39
|
cmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ dom ( 𝑓 ‘ 𝑛 ) ↦ [ 〈 𝑛 , 𝑥 〉 ] 𝑒 ) ) |
41 |
36 40
|
cop |
⊢ 〈 ( 𝑣 / 𝑒 ) , ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ dom ( 𝑓 ‘ 𝑛 ) ↦ [ 〈 𝑛 , 𝑥 〉 ] 𝑒 ) ) 〉 |
42 |
34 33 41
|
csb |
⊢ ⦋ ∩ { 𝑠 ∣ ( 𝑠 Er 𝑣 ∧ ( 𝑥 ∈ 𝑣 ↦ 〈 ( ( 1st ‘ 𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑥 ) ) ‘ ( 2nd ‘ 𝑥 ) ) 〉 ) ⊆ 𝑠 ) } / 𝑒 ⦌ 〈 ( 𝑣 / 𝑒 ) , ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ dom ( 𝑓 ‘ 𝑛 ) ↦ [ 〈 𝑛 , 𝑥 〉 ] 𝑒 ) ) 〉 |
43 |
12 11 42
|
csb |
⊢ ⦋ ∪ 𝑛 ∈ ℕ ( { 𝑛 } × dom ( 𝑓 ‘ 𝑛 ) ) / 𝑣 ⦌ ⦋ ∩ { 𝑠 ∣ ( 𝑠 Er 𝑣 ∧ ( 𝑥 ∈ 𝑣 ↦ 〈 ( ( 1st ‘ 𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑥 ) ) ‘ ( 2nd ‘ 𝑥 ) ) 〉 ) ⊆ 𝑠 ) } / 𝑒 ⦌ 〈 ( 𝑣 / 𝑒 ) , ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ dom ( 𝑓 ‘ 𝑛 ) ↦ [ 〈 𝑛 , 𝑥 〉 ] 𝑒 ) ) 〉 |
44 |
1 2 43
|
cmpt |
⊢ ( 𝑓 ∈ V ↦ ⦋ ∪ 𝑛 ∈ ℕ ( { 𝑛 } × dom ( 𝑓 ‘ 𝑛 ) ) / 𝑣 ⦌ ⦋ ∩ { 𝑠 ∣ ( 𝑠 Er 𝑣 ∧ ( 𝑥 ∈ 𝑣 ↦ 〈 ( ( 1st ‘ 𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑥 ) ) ‘ ( 2nd ‘ 𝑥 ) ) 〉 ) ⊆ 𝑠 ) } / 𝑒 ⦌ 〈 ( 𝑣 / 𝑒 ) , ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ dom ( 𝑓 ‘ 𝑛 ) ↦ [ 〈 𝑛 , 𝑥 〉 ] 𝑒 ) ) 〉 ) |
45 |
0 44
|
wceq |
⊢ HomLimB = ( 𝑓 ∈ V ↦ ⦋ ∪ 𝑛 ∈ ℕ ( { 𝑛 } × dom ( 𝑓 ‘ 𝑛 ) ) / 𝑣 ⦌ ⦋ ∩ { 𝑠 ∣ ( 𝑠 Er 𝑣 ∧ ( 𝑥 ∈ 𝑣 ↦ 〈 ( ( 1st ‘ 𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑥 ) ) ‘ ( 2nd ‘ 𝑥 ) ) 〉 ) ⊆ 𝑠 ) } / 𝑒 ⦌ 〈 ( 𝑣 / 𝑒 ) , ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ dom ( 𝑓 ‘ 𝑛 ) ↦ [ 〈 𝑛 , 𝑥 〉 ] 𝑒 ) ) 〉 ) |