Metamath Proof Explorer


Definition df-homlimb

Description: The input to this function is a sequence (on NN ) of homomorphisms F ( n ) : R ( n ) --> R ( n + 1 ) . The resulting structure is the direct limit of the direct system so defined. This function returns the pair <. S , G >. where S is the terminal object and G is a sequence of functions such that G ( n ) : R ( n ) --> S and G ( n ) = F ( n ) o. G ( n + 1 ) . (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-homlimb HomLimB = ( 𝑓 ∈ V ↦ 𝑛 ∈ ℕ ( { 𝑛 } × dom ( 𝑓𝑛 ) ) / 𝑣 { 𝑠 ∣ ( 𝑠 Er 𝑣 ∧ ( 𝑥𝑣 ↦ ⟨ ( ( 1st𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st𝑥 ) ) ‘ ( 2nd𝑥 ) ) ⟩ ) ⊆ 𝑠 ) } / 𝑒 ⟨ ( 𝑣 / 𝑒 ) , ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ dom ( 𝑓𝑛 ) ↦ [ ⟨ 𝑛 , 𝑥 ⟩ ] 𝑒 ) ) ⟩ )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chlb HomLimB
1 vf 𝑓
2 cvv V
3 vn 𝑛
4 cn
5 3 cv 𝑛
6 5 csn { 𝑛 }
7 1 cv 𝑓
8 5 7 cfv ( 𝑓𝑛 )
9 8 cdm dom ( 𝑓𝑛 )
10 6 9 cxp ( { 𝑛 } × dom ( 𝑓𝑛 ) )
11 3 4 10 ciun 𝑛 ∈ ℕ ( { 𝑛 } × dom ( 𝑓𝑛 ) )
12 vv 𝑣
13 vs 𝑠
14 13 cv 𝑠
15 12 cv 𝑣
16 15 14 wer 𝑠 Er 𝑣
17 vx 𝑥
18 c1st 1st
19 17 cv 𝑥
20 19 18 cfv ( 1st𝑥 )
21 caddc +
22 c1 1
23 20 22 21 co ( ( 1st𝑥 ) + 1 )
24 20 7 cfv ( 𝑓 ‘ ( 1st𝑥 ) )
25 c2nd 2nd
26 19 25 cfv ( 2nd𝑥 )
27 26 24 cfv ( ( 𝑓 ‘ ( 1st𝑥 ) ) ‘ ( 2nd𝑥 ) )
28 23 27 cop ⟨ ( ( 1st𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st𝑥 ) ) ‘ ( 2nd𝑥 ) ) ⟩
29 17 15 28 cmpt ( 𝑥𝑣 ↦ ⟨ ( ( 1st𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st𝑥 ) ) ‘ ( 2nd𝑥 ) ) ⟩ )
30 29 14 wss ( 𝑥𝑣 ↦ ⟨ ( ( 1st𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st𝑥 ) ) ‘ ( 2nd𝑥 ) ) ⟩ ) ⊆ 𝑠
31 16 30 wa ( 𝑠 Er 𝑣 ∧ ( 𝑥𝑣 ↦ ⟨ ( ( 1st𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st𝑥 ) ) ‘ ( 2nd𝑥 ) ) ⟩ ) ⊆ 𝑠 )
32 31 13 cab { 𝑠 ∣ ( 𝑠 Er 𝑣 ∧ ( 𝑥𝑣 ↦ ⟨ ( ( 1st𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st𝑥 ) ) ‘ ( 2nd𝑥 ) ) ⟩ ) ⊆ 𝑠 ) }
33 32 cint { 𝑠 ∣ ( 𝑠 Er 𝑣 ∧ ( 𝑥𝑣 ↦ ⟨ ( ( 1st𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st𝑥 ) ) ‘ ( 2nd𝑥 ) ) ⟩ ) ⊆ 𝑠 ) }
34 ve 𝑒
35 34 cv 𝑒
36 15 35 cqs ( 𝑣 / 𝑒 )
37 5 19 cop 𝑛 , 𝑥
38 37 35 cec [ ⟨ 𝑛 , 𝑥 ⟩ ] 𝑒
39 17 9 38 cmpt ( 𝑥 ∈ dom ( 𝑓𝑛 ) ↦ [ ⟨ 𝑛 , 𝑥 ⟩ ] 𝑒 )
40 3 4 39 cmpt ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ dom ( 𝑓𝑛 ) ↦ [ ⟨ 𝑛 , 𝑥 ⟩ ] 𝑒 ) )
41 36 40 cop ⟨ ( 𝑣 / 𝑒 ) , ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ dom ( 𝑓𝑛 ) ↦ [ ⟨ 𝑛 , 𝑥 ⟩ ] 𝑒 ) ) ⟩
42 34 33 41 csb { 𝑠 ∣ ( 𝑠 Er 𝑣 ∧ ( 𝑥𝑣 ↦ ⟨ ( ( 1st𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st𝑥 ) ) ‘ ( 2nd𝑥 ) ) ⟩ ) ⊆ 𝑠 ) } / 𝑒 ⟨ ( 𝑣 / 𝑒 ) , ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ dom ( 𝑓𝑛 ) ↦ [ ⟨ 𝑛 , 𝑥 ⟩ ] 𝑒 ) ) ⟩
43 12 11 42 csb 𝑛 ∈ ℕ ( { 𝑛 } × dom ( 𝑓𝑛 ) ) / 𝑣 { 𝑠 ∣ ( 𝑠 Er 𝑣 ∧ ( 𝑥𝑣 ↦ ⟨ ( ( 1st𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st𝑥 ) ) ‘ ( 2nd𝑥 ) ) ⟩ ) ⊆ 𝑠 ) } / 𝑒 ⟨ ( 𝑣 / 𝑒 ) , ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ dom ( 𝑓𝑛 ) ↦ [ ⟨ 𝑛 , 𝑥 ⟩ ] 𝑒 ) ) ⟩
44 1 2 43 cmpt ( 𝑓 ∈ V ↦ 𝑛 ∈ ℕ ( { 𝑛 } × dom ( 𝑓𝑛 ) ) / 𝑣 { 𝑠 ∣ ( 𝑠 Er 𝑣 ∧ ( 𝑥𝑣 ↦ ⟨ ( ( 1st𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st𝑥 ) ) ‘ ( 2nd𝑥 ) ) ⟩ ) ⊆ 𝑠 ) } / 𝑒 ⟨ ( 𝑣 / 𝑒 ) , ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ dom ( 𝑓𝑛 ) ↦ [ ⟨ 𝑛 , 𝑥 ⟩ ] 𝑒 ) ) ⟩ )
45 0 44 wceq HomLimB = ( 𝑓 ∈ V ↦ 𝑛 ∈ ℕ ( { 𝑛 } × dom ( 𝑓𝑛 ) ) / 𝑣 { 𝑠 ∣ ( 𝑠 Er 𝑣 ∧ ( 𝑥𝑣 ↦ ⟨ ( ( 1st𝑥 ) + 1 ) , ( ( 𝑓 ‘ ( 1st𝑥 ) ) ‘ ( 2nd𝑥 ) ) ⟩ ) ⊆ 𝑠 ) } / 𝑒 ⟨ ( 𝑣 / 𝑒 ) , ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ dom ( 𝑓𝑛 ) ↦ [ ⟨ 𝑛 , 𝑥 ⟩ ] 𝑒 ) ) ⟩ )