Step |
Hyp |
Ref |
Expression |
0 |
|
chlim |
|- HomLim |
1 |
|
vr |
|- r |
2 |
|
cvv |
|- _V |
3 |
|
vf |
|- f |
4 |
|
chlb |
|- HomLimB |
5 |
3
|
cv |
|- f |
6 |
5 4
|
cfv |
|- ( HomLimB ` f ) |
7 |
|
ve |
|- e |
8 |
|
c1st |
|- 1st |
9 |
7
|
cv |
|- e |
10 |
9 8
|
cfv |
|- ( 1st ` e ) |
11 |
|
vv |
|- v |
12 |
|
c2nd |
|- 2nd |
13 |
9 12
|
cfv |
|- ( 2nd ` e ) |
14 |
|
vg |
|- g |
15 |
|
cbs |
|- Base |
16 |
|
cnx |
|- ndx |
17 |
16 15
|
cfv |
|- ( Base ` ndx ) |
18 |
11
|
cv |
|- v |
19 |
17 18
|
cop |
|- <. ( Base ` ndx ) , v >. |
20 |
|
cplusg |
|- +g |
21 |
16 20
|
cfv |
|- ( +g ` ndx ) |
22 |
|
vn |
|- n |
23 |
|
cn |
|- NN |
24 |
|
vx |
|- x |
25 |
14
|
cv |
|- g |
26 |
22
|
cv |
|- n |
27 |
26 25
|
cfv |
|- ( g ` n ) |
28 |
27
|
cdm |
|- dom ( g ` n ) |
29 |
|
vy |
|- y |
30 |
24
|
cv |
|- x |
31 |
30 27
|
cfv |
|- ( ( g ` n ) ` x ) |
32 |
29
|
cv |
|- y |
33 |
32 27
|
cfv |
|- ( ( g ` n ) ` y ) |
34 |
31 33
|
cop |
|- <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. |
35 |
1
|
cv |
|- r |
36 |
26 35
|
cfv |
|- ( r ` n ) |
37 |
36 20
|
cfv |
|- ( +g ` ( r ` n ) ) |
38 |
30 32 37
|
co |
|- ( x ( +g ` ( r ` n ) ) y ) |
39 |
38 27
|
cfv |
|- ( ( g ` n ) ` ( x ( +g ` ( r ` n ) ) y ) ) |
40 |
34 39
|
cop |
|- <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( +g ` ( r ` n ) ) y ) ) >. |
41 |
24 29 28 28 40
|
cmpo |
|- ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( +g ` ( r ` n ) ) y ) ) >. ) |
42 |
41
|
crn |
|- ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( +g ` ( r ` n ) ) y ) ) >. ) |
43 |
22 23 42
|
ciun |
|- U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( +g ` ( r ` n ) ) y ) ) >. ) |
44 |
21 43
|
cop |
|- <. ( +g ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( +g ` ( r ` n ) ) y ) ) >. ) >. |
45 |
|
cmulr |
|- .r |
46 |
16 45
|
cfv |
|- ( .r ` ndx ) |
47 |
36 45
|
cfv |
|- ( .r ` ( r ` n ) ) |
48 |
30 32 47
|
co |
|- ( x ( .r ` ( r ` n ) ) y ) |
49 |
48 27
|
cfv |
|- ( ( g ` n ) ` ( x ( .r ` ( r ` n ) ) y ) ) |
50 |
34 49
|
cop |
|- <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( .r ` ( r ` n ) ) y ) ) >. |
51 |
24 29 28 28 50
|
cmpo |
|- ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( .r ` ( r ` n ) ) y ) ) >. ) |
52 |
51
|
crn |
|- ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( .r ` ( r ` n ) ) y ) ) >. ) |
53 |
22 23 52
|
ciun |
|- U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( .r ` ( r ` n ) ) y ) ) >. ) |
54 |
46 53
|
cop |
|- <. ( .r ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( .r ` ( r ` n ) ) y ) ) >. ) >. |
55 |
19 44 54
|
ctp |
|- { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( +g ` ( r ` n ) ) y ) ) >. ) >. , <. ( .r ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( .r ` ( r ` n ) ) y ) ) >. ) >. } |
56 |
|
ctopn |
|- TopOpen |
57 |
16 56
|
cfv |
|- ( TopOpen ` ndx ) |
58 |
|
vs |
|- s |
59 |
18
|
cpw |
|- ~P v |
60 |
27
|
ccnv |
|- `' ( g ` n ) |
61 |
58
|
cv |
|- s |
62 |
60 61
|
cima |
|- ( `' ( g ` n ) " s ) |
63 |
36 56
|
cfv |
|- ( TopOpen ` ( r ` n ) ) |
64 |
62 63
|
wcel |
|- ( `' ( g ` n ) " s ) e. ( TopOpen ` ( r ` n ) ) |
65 |
64 22 23
|
wral |
|- A. n e. NN ( `' ( g ` n ) " s ) e. ( TopOpen ` ( r ` n ) ) |
66 |
65 58 59
|
crab |
|- { s e. ~P v | A. n e. NN ( `' ( g ` n ) " s ) e. ( TopOpen ` ( r ` n ) ) } |
67 |
57 66
|
cop |
|- <. ( TopOpen ` ndx ) , { s e. ~P v | A. n e. NN ( `' ( g ` n ) " s ) e. ( TopOpen ` ( r ` n ) ) } >. |
68 |
|
cds |
|- dist |
69 |
16 68
|
cfv |
|- ( dist ` ndx ) |
70 |
26 27
|
cfv |
|- ( ( g ` n ) ` n ) |
71 |
70
|
cdm |
|- dom ( ( g ` n ) ` n ) |
72 |
36 68
|
cfv |
|- ( dist ` ( r ` n ) ) |
73 |
30 32 72
|
co |
|- ( x ( dist ` ( r ` n ) ) y ) |
74 |
34 73
|
cop |
|- <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( x ( dist ` ( r ` n ) ) y ) >. |
75 |
24 29 71 71 74
|
cmpo |
|- ( x e. dom ( ( g ` n ) ` n ) , y e. dom ( ( g ` n ) ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( x ( dist ` ( r ` n ) ) y ) >. ) |
76 |
75
|
crn |
|- ran ( x e. dom ( ( g ` n ) ` n ) , y e. dom ( ( g ` n ) ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( x ( dist ` ( r ` n ) ) y ) >. ) |
77 |
22 23 76
|
ciun |
|- U_ n e. NN ran ( x e. dom ( ( g ` n ) ` n ) , y e. dom ( ( g ` n ) ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( x ( dist ` ( r ` n ) ) y ) >. ) |
78 |
69 77
|
cop |
|- <. ( dist ` ndx ) , U_ n e. NN ran ( x e. dom ( ( g ` n ) ` n ) , y e. dom ( ( g ` n ) ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( x ( dist ` ( r ` n ) ) y ) >. ) >. |
79 |
|
cple |
|- le |
80 |
16 79
|
cfv |
|- ( le ` ndx ) |
81 |
36 79
|
cfv |
|- ( le ` ( r ` n ) ) |
82 |
81 27
|
ccom |
|- ( ( le ` ( r ` n ) ) o. ( g ` n ) ) |
83 |
60 82
|
ccom |
|- ( `' ( g ` n ) o. ( ( le ` ( r ` n ) ) o. ( g ` n ) ) ) |
84 |
22 23 83
|
ciun |
|- U_ n e. NN ( `' ( g ` n ) o. ( ( le ` ( r ` n ) ) o. ( g ` n ) ) ) |
85 |
80 84
|
cop |
|- <. ( le ` ndx ) , U_ n e. NN ( `' ( g ` n ) o. ( ( le ` ( r ` n ) ) o. ( g ` n ) ) ) >. |
86 |
67 78 85
|
ctp |
|- { <. ( TopOpen ` ndx ) , { s e. ~P v | A. n e. NN ( `' ( g ` n ) " s ) e. ( TopOpen ` ( r ` n ) ) } >. , <. ( dist ` ndx ) , U_ n e. NN ran ( x e. dom ( ( g ` n ) ` n ) , y e. dom ( ( g ` n ) ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( x ( dist ` ( r ` n ) ) y ) >. ) >. , <. ( le ` ndx ) , U_ n e. NN ( `' ( g ` n ) o. ( ( le ` ( r ` n ) ) o. ( g ` n ) ) ) >. } |
87 |
55 86
|
cun |
|- ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( +g ` ( r ` n ) ) y ) ) >. ) >. , <. ( .r ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( .r ` ( r ` n ) ) y ) ) >. ) >. } u. { <. ( TopOpen ` ndx ) , { s e. ~P v | A. n e. NN ( `' ( g ` n ) " s ) e. ( TopOpen ` ( r ` n ) ) } >. , <. ( dist ` ndx ) , U_ n e. NN ran ( x e. dom ( ( g ` n ) ` n ) , y e. dom ( ( g ` n ) ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( x ( dist ` ( r ` n ) ) y ) >. ) >. , <. ( le ` ndx ) , U_ n e. NN ( `' ( g ` n ) o. ( ( le ` ( r ` n ) ) o. ( g ` n ) ) ) >. } ) |
88 |
14 13 87
|
csb |
|- [_ ( 2nd ` e ) / g ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( +g ` ( r ` n ) ) y ) ) >. ) >. , <. ( .r ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( .r ` ( r ` n ) ) y ) ) >. ) >. } u. { <. ( TopOpen ` ndx ) , { s e. ~P v | A. n e. NN ( `' ( g ` n ) " s ) e. ( TopOpen ` ( r ` n ) ) } >. , <. ( dist ` ndx ) , U_ n e. NN ran ( x e. dom ( ( g ` n ) ` n ) , y e. dom ( ( g ` n ) ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( x ( dist ` ( r ` n ) ) y ) >. ) >. , <. ( le ` ndx ) , U_ n e. NN ( `' ( g ` n ) o. ( ( le ` ( r ` n ) ) o. ( g ` n ) ) ) >. } ) |
89 |
11 10 88
|
csb |
|- [_ ( 1st ` e ) / v ]_ [_ ( 2nd ` e ) / g ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( +g ` ( r ` n ) ) y ) ) >. ) >. , <. ( .r ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( .r ` ( r ` n ) ) y ) ) >. ) >. } u. { <. ( TopOpen ` ndx ) , { s e. ~P v | A. n e. NN ( `' ( g ` n ) " s ) e. ( TopOpen ` ( r ` n ) ) } >. , <. ( dist ` ndx ) , U_ n e. NN ran ( x e. dom ( ( g ` n ) ` n ) , y e. dom ( ( g ` n ) ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( x ( dist ` ( r ` n ) ) y ) >. ) >. , <. ( le ` ndx ) , U_ n e. NN ( `' ( g ` n ) o. ( ( le ` ( r ` n ) ) o. ( g ` n ) ) ) >. } ) |
90 |
7 6 89
|
csb |
|- [_ ( HomLimB ` f ) / e ]_ [_ ( 1st ` e ) / v ]_ [_ ( 2nd ` e ) / g ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( +g ` ( r ` n ) ) y ) ) >. ) >. , <. ( .r ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( .r ` ( r ` n ) ) y ) ) >. ) >. } u. { <. ( TopOpen ` ndx ) , { s e. ~P v | A. n e. NN ( `' ( g ` n ) " s ) e. ( TopOpen ` ( r ` n ) ) } >. , <. ( dist ` ndx ) , U_ n e. NN ran ( x e. dom ( ( g ` n ) ` n ) , y e. dom ( ( g ` n ) ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( x ( dist ` ( r ` n ) ) y ) >. ) >. , <. ( le ` ndx ) , U_ n e. NN ( `' ( g ` n ) o. ( ( le ` ( r ` n ) ) o. ( g ` n ) ) ) >. } ) |
91 |
1 3 2 2 90
|
cmpo |
|- ( r e. _V , f e. _V |-> [_ ( HomLimB ` f ) / e ]_ [_ ( 1st ` e ) / v ]_ [_ ( 2nd ` e ) / g ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( +g ` ( r ` n ) ) y ) ) >. ) >. , <. ( .r ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( .r ` ( r ` n ) ) y ) ) >. ) >. } u. { <. ( TopOpen ` ndx ) , { s e. ~P v | A. n e. NN ( `' ( g ` n ) " s ) e. ( TopOpen ` ( r ` n ) ) } >. , <. ( dist ` ndx ) , U_ n e. NN ran ( x e. dom ( ( g ` n ) ` n ) , y e. dom ( ( g ` n ) ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( x ( dist ` ( r ` n ) ) y ) >. ) >. , <. ( le ` ndx ) , U_ n e. NN ( `' ( g ` n ) o. ( ( le ` ( r ` n ) ) o. ( g ` n ) ) ) >. } ) ) |
92 |
0 91
|
wceq |
|- HomLim = ( r e. _V , f e. _V |-> [_ ( HomLimB ` f ) / e ]_ [_ ( 1st ` e ) / v ]_ [_ ( 2nd ` e ) / g ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( +g ` ( r ` n ) ) y ) ) >. ) >. , <. ( .r ` ndx ) , U_ n e. NN ran ( x e. dom ( g ` n ) , y e. dom ( g ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( ( g ` n ) ` ( x ( .r ` ( r ` n ) ) y ) ) >. ) >. } u. { <. ( TopOpen ` ndx ) , { s e. ~P v | A. n e. NN ( `' ( g ` n ) " s ) e. ( TopOpen ` ( r ` n ) ) } >. , <. ( dist ` ndx ) , U_ n e. NN ran ( x e. dom ( ( g ` n ) ` n ) , y e. dom ( ( g ` n ) ` n ) |-> <. <. ( ( g ` n ) ` x ) , ( ( g ` n ) ` y ) >. , ( x ( dist ` ( r ` n ) ) y ) >. ) >. , <. ( le ` ndx ) , U_ n e. NN ( `' ( g ` n ) o. ( ( le ` ( r ` n ) ) o. ( g ` n ) ) ) >. } ) ) |