| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpfl |
|- polyFld |
| 1 |
|
vr |
|- r |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vp |
|- p |
| 4 |
|
cpl1 |
|- Poly1 |
| 5 |
1
|
cv |
|- r |
| 6 |
5 4
|
cfv |
|- ( Poly1 ` r ) |
| 7 |
|
vs |
|- s |
| 8 |
|
crsp |
|- RSpan |
| 9 |
7
|
cv |
|- s |
| 10 |
9 8
|
cfv |
|- ( RSpan ` s ) |
| 11 |
3
|
cv |
|- p |
| 12 |
11
|
csn |
|- { p } |
| 13 |
12 10
|
cfv |
|- ( ( RSpan ` s ) ` { p } ) |
| 14 |
|
vi |
|- i |
| 15 |
|
vc |
|- c |
| 16 |
|
cbs |
|- Base |
| 17 |
5 16
|
cfv |
|- ( Base ` r ) |
| 18 |
15
|
cv |
|- c |
| 19 |
|
cvsca |
|- .s |
| 20 |
9 19
|
cfv |
|- ( .s ` s ) |
| 21 |
|
cur |
|- 1r |
| 22 |
9 21
|
cfv |
|- ( 1r ` s ) |
| 23 |
18 22 20
|
co |
|- ( c ( .s ` s ) ( 1r ` s ) ) |
| 24 |
|
cqg |
|- ~QG |
| 25 |
14
|
cv |
|- i |
| 26 |
9 25 24
|
co |
|- ( s ~QG i ) |
| 27 |
23 26
|
cec |
|- [ ( c ( .s ` s ) ( 1r ` s ) ) ] ( s ~QG i ) |
| 28 |
15 17 27
|
cmpt |
|- ( c e. ( Base ` r ) |-> [ ( c ( .s ` s ) ( 1r ` s ) ) ] ( s ~QG i ) ) |
| 29 |
|
vf |
|- f |
| 30 |
|
cqus |
|- /s |
| 31 |
9 26 30
|
co |
|- ( s /s ( s ~QG i ) ) |
| 32 |
|
vt |
|- t |
| 33 |
32
|
cv |
|- t |
| 34 |
|
ctng |
|- toNrmGrp |
| 35 |
|
vn |
|- n |
| 36 |
|
cabv |
|- AbsVal |
| 37 |
33 36
|
cfv |
|- ( AbsVal ` t ) |
| 38 |
35
|
cv |
|- n |
| 39 |
29
|
cv |
|- f |
| 40 |
38 39
|
ccom |
|- ( n o. f ) |
| 41 |
|
cnm |
|- norm |
| 42 |
5 41
|
cfv |
|- ( norm ` r ) |
| 43 |
40 42
|
wceq |
|- ( n o. f ) = ( norm ` r ) |
| 44 |
43 35 37
|
crio |
|- ( iota_ n e. ( AbsVal ` t ) ( n o. f ) = ( norm ` r ) ) |
| 45 |
33 44 34
|
co |
|- ( t toNrmGrp ( iota_ n e. ( AbsVal ` t ) ( n o. f ) = ( norm ` r ) ) ) |
| 46 |
|
csts |
|- sSet |
| 47 |
|
cple |
|- le |
| 48 |
|
cnx |
|- ndx |
| 49 |
48 47
|
cfv |
|- ( le ` ndx ) |
| 50 |
|
vz |
|- z |
| 51 |
33 16
|
cfv |
|- ( Base ` t ) |
| 52 |
|
vq |
|- q |
| 53 |
50
|
cv |
|- z |
| 54 |
52
|
cv |
|- q |
| 55 |
|
cr1p |
|- rem1p |
| 56 |
5 55
|
cfv |
|- ( rem1p ` r ) |
| 57 |
54 11 56
|
co |
|- ( q ( rem1p ` r ) p ) |
| 58 |
57 54
|
wceq |
|- ( q ( rem1p ` r ) p ) = q |
| 59 |
58 52 53
|
crio |
|- ( iota_ q e. z ( q ( rem1p ` r ) p ) = q ) |
| 60 |
50 51 59
|
cmpt |
|- ( z e. ( Base ` t ) |-> ( iota_ q e. z ( q ( rem1p ` r ) p ) = q ) ) |
| 61 |
|
vg |
|- g |
| 62 |
61
|
cv |
|- g |
| 63 |
62
|
ccnv |
|- `' g |
| 64 |
9 47
|
cfv |
|- ( le ` s ) |
| 65 |
64 62
|
ccom |
|- ( ( le ` s ) o. g ) |
| 66 |
63 65
|
ccom |
|- ( `' g o. ( ( le ` s ) o. g ) ) |
| 67 |
61 60 66
|
csb |
|- [_ ( z e. ( Base ` t ) |-> ( iota_ q e. z ( q ( rem1p ` r ) p ) = q ) ) / g ]_ ( `' g o. ( ( le ` s ) o. g ) ) |
| 68 |
49 67
|
cop |
|- <. ( le ` ndx ) , [_ ( z e. ( Base ` t ) |-> ( iota_ q e. z ( q ( rem1p ` r ) p ) = q ) ) / g ]_ ( `' g o. ( ( le ` s ) o. g ) ) >. |
| 69 |
45 68 46
|
co |
|- ( ( t toNrmGrp ( iota_ n e. ( AbsVal ` t ) ( n o. f ) = ( norm ` r ) ) ) sSet <. ( le ` ndx ) , [_ ( z e. ( Base ` t ) |-> ( iota_ q e. z ( q ( rem1p ` r ) p ) = q ) ) / g ]_ ( `' g o. ( ( le ` s ) o. g ) ) >. ) |
| 70 |
32 31 69
|
csb |
|- [_ ( s /s ( s ~QG i ) ) / t ]_ ( ( t toNrmGrp ( iota_ n e. ( AbsVal ` t ) ( n o. f ) = ( norm ` r ) ) ) sSet <. ( le ` ndx ) , [_ ( z e. ( Base ` t ) |-> ( iota_ q e. z ( q ( rem1p ` r ) p ) = q ) ) / g ]_ ( `' g o. ( ( le ` s ) o. g ) ) >. ) |
| 71 |
70 39
|
cop |
|- <. [_ ( s /s ( s ~QG i ) ) / t ]_ ( ( t toNrmGrp ( iota_ n e. ( AbsVal ` t ) ( n o. f ) = ( norm ` r ) ) ) sSet <. ( le ` ndx ) , [_ ( z e. ( Base ` t ) |-> ( iota_ q e. z ( q ( rem1p ` r ) p ) = q ) ) / g ]_ ( `' g o. ( ( le ` s ) o. g ) ) >. ) , f >. |
| 72 |
29 28 71
|
csb |
|- [_ ( c e. ( Base ` r ) |-> [ ( c ( .s ` s ) ( 1r ` s ) ) ] ( s ~QG i ) ) / f ]_ <. [_ ( s /s ( s ~QG i ) ) / t ]_ ( ( t toNrmGrp ( iota_ n e. ( AbsVal ` t ) ( n o. f ) = ( norm ` r ) ) ) sSet <. ( le ` ndx ) , [_ ( z e. ( Base ` t ) |-> ( iota_ q e. z ( q ( rem1p ` r ) p ) = q ) ) / g ]_ ( `' g o. ( ( le ` s ) o. g ) ) >. ) , f >. |
| 73 |
14 13 72
|
csb |
|- [_ ( ( RSpan ` s ) ` { p } ) / i ]_ [_ ( c e. ( Base ` r ) |-> [ ( c ( .s ` s ) ( 1r ` s ) ) ] ( s ~QG i ) ) / f ]_ <. [_ ( s /s ( s ~QG i ) ) / t ]_ ( ( t toNrmGrp ( iota_ n e. ( AbsVal ` t ) ( n o. f ) = ( norm ` r ) ) ) sSet <. ( le ` ndx ) , [_ ( z e. ( Base ` t ) |-> ( iota_ q e. z ( q ( rem1p ` r ) p ) = q ) ) / g ]_ ( `' g o. ( ( le ` s ) o. g ) ) >. ) , f >. |
| 74 |
7 6 73
|
csb |
|- [_ ( Poly1 ` r ) / s ]_ [_ ( ( RSpan ` s ) ` { p } ) / i ]_ [_ ( c e. ( Base ` r ) |-> [ ( c ( .s ` s ) ( 1r ` s ) ) ] ( s ~QG i ) ) / f ]_ <. [_ ( s /s ( s ~QG i ) ) / t ]_ ( ( t toNrmGrp ( iota_ n e. ( AbsVal ` t ) ( n o. f ) = ( norm ` r ) ) ) sSet <. ( le ` ndx ) , [_ ( z e. ( Base ` t ) |-> ( iota_ q e. z ( q ( rem1p ` r ) p ) = q ) ) / g ]_ ( `' g o. ( ( le ` s ) o. g ) ) >. ) , f >. |
| 75 |
1 3 2 2 74
|
cmpo |
|- ( r e. _V , p e. _V |-> [_ ( Poly1 ` r ) / s ]_ [_ ( ( RSpan ` s ) ` { p } ) / i ]_ [_ ( c e. ( Base ` r ) |-> [ ( c ( .s ` s ) ( 1r ` s ) ) ] ( s ~QG i ) ) / f ]_ <. [_ ( s /s ( s ~QG i ) ) / t ]_ ( ( t toNrmGrp ( iota_ n e. ( AbsVal ` t ) ( n o. f ) = ( norm ` r ) ) ) sSet <. ( le ` ndx ) , [_ ( z e. ( Base ` t ) |-> ( iota_ q e. z ( q ( rem1p ` r ) p ) = q ) ) / g ]_ ( `' g o. ( ( le ` s ) o. g ) ) >. ) , f >. ) |
| 76 |
0 75
|
wceq |
|- polyFld = ( r e. _V , p e. _V |-> [_ ( Poly1 ` r ) / s ]_ [_ ( ( RSpan ` s ) ` { p } ) / i ]_ [_ ( c e. ( Base ` r ) |-> [ ( c ( .s ` s ) ( 1r ` s ) ) ] ( s ~QG i ) ) / f ]_ <. [_ ( s /s ( s ~QG i ) ) / t ]_ ( ( t toNrmGrp ( iota_ n e. ( AbsVal ` t ) ( n o. f ) = ( norm ` r ) ) ) sSet <. ( le ` ndx ) , [_ ( z e. ( Base ` t ) |-> ( iota_ q e. z ( q ( rem1p ` r ) p ) = q ) ) / g ]_ ( `' g o. ( ( le ` s ) o. g ) ) >. ) , f >. ) |