Metamath Proof Explorer


Definition df-sfl1

Description: Temporary construction for the splitting field of a polynomial. The inputs are a field r and a polynomial p that we want to split, along with a tuple j in the same format as the output. The output is a tuple <. S , F >. where S is the splitting field and F is an injective homomorphism from the original field r .

The function works by repeatedly finding the smallest monic irreducible factor, and extending the field by that factor using the polyFld construction. We keep track of a total order in each of the splitting fields so that we can pick an element definably without needing global choice. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-sfl1
|- splitFld1 = ( r e. _V , j e. _V |-> ( p e. ( Poly1 ` r ) |-> ( rec ( ( s e. _V , f e. _V |-> [_ ( Poly1 ` s ) / m ]_ [_ { g e. ( ( Monic1p ` s ) i^i ( Irred ` m ) ) | ( g ( ||r ` m ) ( p o. f ) /\ 1 < ( s deg1 g ) ) } / b ]_ if ( ( ( p o. f ) = ( 0g ` m ) \/ b = (/) ) , <. s , f >. , [_ ( glb ` b ) / h ]_ [_ ( s polyFld h ) / t ]_ <. ( 1st ` t ) , ( f o. ( 2nd ` t ) ) >. ) ) , j ) ` ( card ` ( 1 ... ( r deg1 p ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csf1
 |-  splitFld1
1 vr
 |-  r
2 cvv
 |-  _V
3 vj
 |-  j
4 vp
 |-  p
5 cpl1
 |-  Poly1
6 1 cv
 |-  r
7 6 5 cfv
 |-  ( Poly1 ` r )
8 vs
 |-  s
9 vf
 |-  f
10 8 cv
 |-  s
11 10 5 cfv
 |-  ( Poly1 ` s )
12 vm
 |-  m
13 vg
 |-  g
14 cmn1
 |-  Monic1p
15 10 14 cfv
 |-  ( Monic1p ` s )
16 cir
 |-  Irred
17 12 cv
 |-  m
18 17 16 cfv
 |-  ( Irred ` m )
19 15 18 cin
 |-  ( ( Monic1p ` s ) i^i ( Irred ` m ) )
20 13 cv
 |-  g
21 cdsr
 |-  ||r
22 17 21 cfv
 |-  ( ||r ` m )
23 4 cv
 |-  p
24 9 cv
 |-  f
25 23 24 ccom
 |-  ( p o. f )
26 20 25 22 wbr
 |-  g ( ||r ` m ) ( p o. f )
27 c1
 |-  1
28 clt
 |-  <
29 cdg1
 |-  deg1
30 10 20 29 co
 |-  ( s deg1 g )
31 27 30 28 wbr
 |-  1 < ( s deg1 g )
32 26 31 wa
 |-  ( g ( ||r ` m ) ( p o. f ) /\ 1 < ( s deg1 g ) )
33 32 13 19 crab
 |-  { g e. ( ( Monic1p ` s ) i^i ( Irred ` m ) ) | ( g ( ||r ` m ) ( p o. f ) /\ 1 < ( s deg1 g ) ) }
34 vb
 |-  b
35 c0g
 |-  0g
36 17 35 cfv
 |-  ( 0g ` m )
37 25 36 wceq
 |-  ( p o. f ) = ( 0g ` m )
38 34 cv
 |-  b
39 c0
 |-  (/)
40 38 39 wceq
 |-  b = (/)
41 37 40 wo
 |-  ( ( p o. f ) = ( 0g ` m ) \/ b = (/) )
42 10 24 cop
 |-  <. s , f >.
43 cglb
 |-  glb
44 38 43 cfv
 |-  ( glb ` b )
45 vh
 |-  h
46 cpfl
 |-  polyFld
47 45 cv
 |-  h
48 10 47 46 co
 |-  ( s polyFld h )
49 vt
 |-  t
50 c1st
 |-  1st
51 49 cv
 |-  t
52 51 50 cfv
 |-  ( 1st ` t )
53 c2nd
 |-  2nd
54 51 53 cfv
 |-  ( 2nd ` t )
55 24 54 ccom
 |-  ( f o. ( 2nd ` t ) )
56 52 55 cop
 |-  <. ( 1st ` t ) , ( f o. ( 2nd ` t ) ) >.
57 49 48 56 csb
 |-  [_ ( s polyFld h ) / t ]_ <. ( 1st ` t ) , ( f o. ( 2nd ` t ) ) >.
58 45 44 57 csb
 |-  [_ ( glb ` b ) / h ]_ [_ ( s polyFld h ) / t ]_ <. ( 1st ` t ) , ( f o. ( 2nd ` t ) ) >.
59 41 42 58 cif
 |-  if ( ( ( p o. f ) = ( 0g ` m ) \/ b = (/) ) , <. s , f >. , [_ ( glb ` b ) / h ]_ [_ ( s polyFld h ) / t ]_ <. ( 1st ` t ) , ( f o. ( 2nd ` t ) ) >. )
60 34 33 59 csb
 |-  [_ { g e. ( ( Monic1p ` s ) i^i ( Irred ` m ) ) | ( g ( ||r ` m ) ( p o. f ) /\ 1 < ( s deg1 g ) ) } / b ]_ if ( ( ( p o. f ) = ( 0g ` m ) \/ b = (/) ) , <. s , f >. , [_ ( glb ` b ) / h ]_ [_ ( s polyFld h ) / t ]_ <. ( 1st ` t ) , ( f o. ( 2nd ` t ) ) >. )
61 12 11 60 csb
 |-  [_ ( Poly1 ` s ) / m ]_ [_ { g e. ( ( Monic1p ` s ) i^i ( Irred ` m ) ) | ( g ( ||r ` m ) ( p o. f ) /\ 1 < ( s deg1 g ) ) } / b ]_ if ( ( ( p o. f ) = ( 0g ` m ) \/ b = (/) ) , <. s , f >. , [_ ( glb ` b ) / h ]_ [_ ( s polyFld h ) / t ]_ <. ( 1st ` t ) , ( f o. ( 2nd ` t ) ) >. )
62 8 9 2 2 61 cmpo
 |-  ( s e. _V , f e. _V |-> [_ ( Poly1 ` s ) / m ]_ [_ { g e. ( ( Monic1p ` s ) i^i ( Irred ` m ) ) | ( g ( ||r ` m ) ( p o. f ) /\ 1 < ( s deg1 g ) ) } / b ]_ if ( ( ( p o. f ) = ( 0g ` m ) \/ b = (/) ) , <. s , f >. , [_ ( glb ` b ) / h ]_ [_ ( s polyFld h ) / t ]_ <. ( 1st ` t ) , ( f o. ( 2nd ` t ) ) >. ) )
63 3 cv
 |-  j
64 62 63 crdg
 |-  rec ( ( s e. _V , f e. _V |-> [_ ( Poly1 ` s ) / m ]_ [_ { g e. ( ( Monic1p ` s ) i^i ( Irred ` m ) ) | ( g ( ||r ` m ) ( p o. f ) /\ 1 < ( s deg1 g ) ) } / b ]_ if ( ( ( p o. f ) = ( 0g ` m ) \/ b = (/) ) , <. s , f >. , [_ ( glb ` b ) / h ]_ [_ ( s polyFld h ) / t ]_ <. ( 1st ` t ) , ( f o. ( 2nd ` t ) ) >. ) ) , j )
65 ccrd
 |-  card
66 cfz
 |-  ...
67 6 23 29 co
 |-  ( r deg1 p )
68 27 67 66 co
 |-  ( 1 ... ( r deg1 p ) )
69 68 65 cfv
 |-  ( card ` ( 1 ... ( r deg1 p ) ) )
70 69 64 cfv
 |-  ( rec ( ( s e. _V , f e. _V |-> [_ ( Poly1 ` s ) / m ]_ [_ { g e. ( ( Monic1p ` s ) i^i ( Irred ` m ) ) | ( g ( ||r ` m ) ( p o. f ) /\ 1 < ( s deg1 g ) ) } / b ]_ if ( ( ( p o. f ) = ( 0g ` m ) \/ b = (/) ) , <. s , f >. , [_ ( glb ` b ) / h ]_ [_ ( s polyFld h ) / t ]_ <. ( 1st ` t ) , ( f o. ( 2nd ` t ) ) >. ) ) , j ) ` ( card ` ( 1 ... ( r deg1 p ) ) ) )
71 4 7 70 cmpt
 |-  ( p e. ( Poly1 ` r ) |-> ( rec ( ( s e. _V , f e. _V |-> [_ ( Poly1 ` s ) / m ]_ [_ { g e. ( ( Monic1p ` s ) i^i ( Irred ` m ) ) | ( g ( ||r ` m ) ( p o. f ) /\ 1 < ( s deg1 g ) ) } / b ]_ if ( ( ( p o. f ) = ( 0g ` m ) \/ b = (/) ) , <. s , f >. , [_ ( glb ` b ) / h ]_ [_ ( s polyFld h ) / t ]_ <. ( 1st ` t ) , ( f o. ( 2nd ` t ) ) >. ) ) , j ) ` ( card ` ( 1 ... ( r deg1 p ) ) ) ) )
72 1 3 2 2 71 cmpo
 |-  ( r e. _V , j e. _V |-> ( p e. ( Poly1 ` r ) |-> ( rec ( ( s e. _V , f e. _V |-> [_ ( Poly1 ` s ) / m ]_ [_ { g e. ( ( Monic1p ` s ) i^i ( Irred ` m ) ) | ( g ( ||r ` m ) ( p o. f ) /\ 1 < ( s deg1 g ) ) } / b ]_ if ( ( ( p o. f ) = ( 0g ` m ) \/ b = (/) ) , <. s , f >. , [_ ( glb ` b ) / h ]_ [_ ( s polyFld h ) / t ]_ <. ( 1st ` t ) , ( f o. ( 2nd ` t ) ) >. ) ) , j ) ` ( card ` ( 1 ... ( r deg1 p ) ) ) ) ) )
73 0 72 wceq
 |-  splitFld1 = ( r e. _V , j e. _V |-> ( p e. ( Poly1 ` r ) |-> ( rec ( ( s e. _V , f e. _V |-> [_ ( Poly1 ` s ) / m ]_ [_ { g e. ( ( Monic1p ` s ) i^i ( Irred ` m ) ) | ( g ( ||r ` m ) ( p o. f ) /\ 1 < ( s deg1 g ) ) } / b ]_ if ( ( ( p o. f ) = ( 0g ` m ) \/ b = (/) ) , <. s , f >. , [_ ( glb ` b ) / h ]_ [_ ( s polyFld h ) / t ]_ <. ( 1st ` t ) , ( f o. ( 2nd ` t ) ) >. ) ) , j ) ` ( card ` ( 1 ... ( r deg1 p ) ) ) ) ) )