Step |
Hyp |
Ref |
Expression |
0 |
|
csf |
|- splitFld |
1 |
|
vr |
|- r |
2 |
|
cvv |
|- _V |
3 |
|
vp |
|- p |
4 |
|
vx |
|- x |
5 |
|
vf |
|- f |
6 |
5
|
cv |
|- f |
7 |
|
clt |
|- < |
8 |
|
cplt |
|- lt |
9 |
1
|
cv |
|- r |
10 |
9 8
|
cfv |
|- ( lt ` r ) |
11 |
|
c1 |
|- 1 |
12 |
|
cfz |
|- ... |
13 |
|
chash |
|- # |
14 |
3
|
cv |
|- p |
15 |
14 13
|
cfv |
|- ( # ` p ) |
16 |
11 15 12
|
co |
|- ( 1 ... ( # ` p ) ) |
17 |
16 14 7 10 6
|
wiso |
|- f Isom < , ( lt ` r ) ( ( 1 ... ( # ` p ) ) , p ) |
18 |
4
|
cv |
|- x |
19 |
|
cc0 |
|- 0 |
20 |
|
ve |
|- e |
21 |
|
vg |
|- g |
22 |
|
csf1 |
|- splitFld1 |
23 |
20
|
cv |
|- e |
24 |
9 23 22
|
co |
|- ( r splitFld1 e ) |
25 |
21
|
cv |
|- g |
26 |
25 24
|
cfv |
|- ( ( r splitFld1 e ) ` g ) |
27 |
20 21 2 2 26
|
cmpo |
|- ( e e. _V , g e. _V |-> ( ( r splitFld1 e ) ` g ) ) |
28 |
|
cid |
|- _I |
29 |
|
cbs |
|- Base |
30 |
9 29
|
cfv |
|- ( Base ` r ) |
31 |
28 30
|
cres |
|- ( _I |` ( Base ` r ) ) |
32 |
9 31
|
cop |
|- <. r , ( _I |` ( Base ` r ) ) >. |
33 |
19 32
|
cop |
|- <. 0 , <. r , ( _I |` ( Base ` r ) ) >. >. |
34 |
33
|
csn |
|- { <. 0 , <. r , ( _I |` ( Base ` r ) ) >. >. } |
35 |
6 34
|
cun |
|- ( f u. { <. 0 , <. r , ( _I |` ( Base ` r ) ) >. >. } ) |
36 |
27 35 19
|
cseq |
|- seq 0 ( ( e e. _V , g e. _V |-> ( ( r splitFld1 e ) ` g ) ) , ( f u. { <. 0 , <. r , ( _I |` ( Base ` r ) ) >. >. } ) ) |
37 |
15 36
|
cfv |
|- ( seq 0 ( ( e e. _V , g e. _V |-> ( ( r splitFld1 e ) ` g ) ) , ( f u. { <. 0 , <. r , ( _I |` ( Base ` r ) ) >. >. } ) ) ` ( # ` p ) ) |
38 |
18 37
|
wceq |
|- x = ( seq 0 ( ( e e. _V , g e. _V |-> ( ( r splitFld1 e ) ` g ) ) , ( f u. { <. 0 , <. r , ( _I |` ( Base ` r ) ) >. >. } ) ) ` ( # ` p ) ) |
39 |
17 38
|
wa |
|- ( f Isom < , ( lt ` r ) ( ( 1 ... ( # ` p ) ) , p ) /\ x = ( seq 0 ( ( e e. _V , g e. _V |-> ( ( r splitFld1 e ) ` g ) ) , ( f u. { <. 0 , <. r , ( _I |` ( Base ` r ) ) >. >. } ) ) ` ( # ` p ) ) ) |
40 |
39 5
|
wex |
|- E. f ( f Isom < , ( lt ` r ) ( ( 1 ... ( # ` p ) ) , p ) /\ x = ( seq 0 ( ( e e. _V , g e. _V |-> ( ( r splitFld1 e ) ` g ) ) , ( f u. { <. 0 , <. r , ( _I |` ( Base ` r ) ) >. >. } ) ) ` ( # ` p ) ) ) |
41 |
40 4
|
cio |
|- ( iota x E. f ( f Isom < , ( lt ` r ) ( ( 1 ... ( # ` p ) ) , p ) /\ x = ( seq 0 ( ( e e. _V , g e. _V |-> ( ( r splitFld1 e ) ` g ) ) , ( f u. { <. 0 , <. r , ( _I |` ( Base ` r ) ) >. >. } ) ) ` ( # ` p ) ) ) ) |
42 |
1 3 2 2 41
|
cmpo |
|- ( r e. _V , p e. _V |-> ( iota x E. f ( f Isom < , ( lt ` r ) ( ( 1 ... ( # ` p ) ) , p ) /\ x = ( seq 0 ( ( e e. _V , g e. _V |-> ( ( r splitFld1 e ) ` g ) ) , ( f u. { <. 0 , <. r , ( _I |` ( Base ` r ) ) >. >. } ) ) ` ( # ` p ) ) ) ) ) |
43 |
0 42
|
wceq |
|- splitFld = ( r e. _V , p e. _V |-> ( iota x E. f ( f Isom < , ( lt ` r ) ( ( 1 ... ( # ` p ) ) , p ) /\ x = ( seq 0 ( ( e e. _V , g e. _V |-> ( ( r splitFld1 e ) ` g ) ) , ( f u. { <. 0 , <. r , ( _I |` ( Base ` r ) ) >. >. } ) ) ` ( # ` p ) ) ) ) ) |