| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csf |
⊢ splitFld |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vp |
⊢ 𝑝 |
| 4 |
|
vx |
⊢ 𝑥 |
| 5 |
|
vf |
⊢ 𝑓 |
| 6 |
5
|
cv |
⊢ 𝑓 |
| 7 |
|
clt |
⊢ < |
| 8 |
|
cplt |
⊢ lt |
| 9 |
1
|
cv |
⊢ 𝑟 |
| 10 |
9 8
|
cfv |
⊢ ( lt ‘ 𝑟 ) |
| 11 |
|
c1 |
⊢ 1 |
| 12 |
|
cfz |
⊢ ... |
| 13 |
|
chash |
⊢ ♯ |
| 14 |
3
|
cv |
⊢ 𝑝 |
| 15 |
14 13
|
cfv |
⊢ ( ♯ ‘ 𝑝 ) |
| 16 |
11 15 12
|
co |
⊢ ( 1 ... ( ♯ ‘ 𝑝 ) ) |
| 17 |
16 14 7 10 6
|
wiso |
⊢ 𝑓 Isom < , ( lt ‘ 𝑟 ) ( ( 1 ... ( ♯ ‘ 𝑝 ) ) , 𝑝 ) |
| 18 |
4
|
cv |
⊢ 𝑥 |
| 19 |
|
cc0 |
⊢ 0 |
| 20 |
|
ve |
⊢ 𝑒 |
| 21 |
|
vg |
⊢ 𝑔 |
| 22 |
|
csf1 |
⊢ splitFld1 |
| 23 |
20
|
cv |
⊢ 𝑒 |
| 24 |
9 23 22
|
co |
⊢ ( 𝑟 splitFld1 𝑒 ) |
| 25 |
21
|
cv |
⊢ 𝑔 |
| 26 |
25 24
|
cfv |
⊢ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) |
| 27 |
20 21 2 2 26
|
cmpo |
⊢ ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) |
| 28 |
|
cid |
⊢ I |
| 29 |
|
cbs |
⊢ Base |
| 30 |
9 29
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 31 |
28 30
|
cres |
⊢ ( I ↾ ( Base ‘ 𝑟 ) ) |
| 32 |
9 31
|
cop |
⊢ 〈 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 |
| 33 |
19 32
|
cop |
⊢ 〈 0 , 〈 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 |
| 34 |
33
|
csn |
⊢ { 〈 0 , 〈 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } |
| 35 |
6 34
|
cun |
⊢ ( 𝑓 ∪ { 〈 0 , 〈 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) |
| 36 |
27 35 19
|
cseq |
⊢ seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { 〈 0 , 〈 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) ) |
| 37 |
15 36
|
cfv |
⊢ ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { 〈 0 , 〈 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) ) ‘ ( ♯ ‘ 𝑝 ) ) |
| 38 |
18 37
|
wceq |
⊢ 𝑥 = ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { 〈 0 , 〈 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) ) ‘ ( ♯ ‘ 𝑝 ) ) |
| 39 |
17 38
|
wa |
⊢ ( 𝑓 Isom < , ( lt ‘ 𝑟 ) ( ( 1 ... ( ♯ ‘ 𝑝 ) ) , 𝑝 ) ∧ 𝑥 = ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { 〈 0 , 〈 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) ) ‘ ( ♯ ‘ 𝑝 ) ) ) |
| 40 |
39 5
|
wex |
⊢ ∃ 𝑓 ( 𝑓 Isom < , ( lt ‘ 𝑟 ) ( ( 1 ... ( ♯ ‘ 𝑝 ) ) , 𝑝 ) ∧ 𝑥 = ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { 〈 0 , 〈 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) ) ‘ ( ♯ ‘ 𝑝 ) ) ) |
| 41 |
40 4
|
cio |
⊢ ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 Isom < , ( lt ‘ 𝑟 ) ( ( 1 ... ( ♯ ‘ 𝑝 ) ) , 𝑝 ) ∧ 𝑥 = ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { 〈 0 , 〈 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) ) ‘ ( ♯ ‘ 𝑝 ) ) ) ) |
| 42 |
1 3 2 2 41
|
cmpo |
⊢ ( 𝑟 ∈ V , 𝑝 ∈ V ↦ ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 Isom < , ( lt ‘ 𝑟 ) ( ( 1 ... ( ♯ ‘ 𝑝 ) ) , 𝑝 ) ∧ 𝑥 = ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { 〈 0 , 〈 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) ) ‘ ( ♯ ‘ 𝑝 ) ) ) ) ) |
| 43 |
0 42
|
wceq |
⊢ splitFld = ( 𝑟 ∈ V , 𝑝 ∈ V ↦ ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 Isom < , ( lt ‘ 𝑟 ) ( ( 1 ... ( ♯ ‘ 𝑝 ) ) , 𝑝 ) ∧ 𝑥 = ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { 〈 0 , 〈 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) ) ‘ ( ♯ ‘ 𝑝 ) ) ) ) ) |