Metamath Proof Explorer


Definition df-sfl

Description: Define the splitting field of a finite collection of polynomials, given a total ordered base field. The output is a tuple <. S , F >. where S is the totally ordered splitting field and F is an injective homomorphism from the original field r . (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-sfl splitFld = ( 𝑟 ∈ V , 𝑝 ∈ V ↦ ( ℩ 𝑥𝑓 ( 𝑓 Isom < , ( lt ‘ 𝑟 ) ( ( 1 ... ( ♯ ‘ 𝑝 ) ) , 𝑝 ) ∧ 𝑥 = ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { ⟨ 0 , ⟨ 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) ) ‘ ( ♯ ‘ 𝑝 ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csf splitFld
1 vr 𝑟
2 cvv V
3 vp 𝑝
4 vx 𝑥
5 vf 𝑓
6 5 cv 𝑓
7 clt <
8 cplt lt
9 1 cv 𝑟
10 9 8 cfv ( lt ‘ 𝑟 )
11 c1 1
12 cfz ...
13 chash
14 3 cv 𝑝
15 14 13 cfv ( ♯ ‘ 𝑝 )
16 11 15 12 co ( 1 ... ( ♯ ‘ 𝑝 ) )
17 16 14 7 10 6 wiso 𝑓 Isom < , ( lt ‘ 𝑟 ) ( ( 1 ... ( ♯ ‘ 𝑝 ) ) , 𝑝 )
18 4 cv 𝑥
19 cc0 0
20 ve 𝑒
21 vg 𝑔
22 csf1 splitFld1
23 20 cv 𝑒
24 9 23 22 co ( 𝑟 splitFld1 𝑒 )
25 21 cv 𝑔
26 25 24 cfv ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 )
27 20 21 2 2 26 cmpo ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) )
28 cid I
29 cbs Base
30 9 29 cfv ( Base ‘ 𝑟 )
31 28 30 cres ( I ↾ ( Base ‘ 𝑟 ) )
32 9 31 cop 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩
33 19 32 cop ⟨ 0 , ⟨ 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩
34 33 csn { ⟨ 0 , ⟨ 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ }
35 6 34 cun ( 𝑓 ∪ { ⟨ 0 , ⟨ 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } )
36 27 35 19 cseq seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { ⟨ 0 , ⟨ 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) )
37 15 36 cfv ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { ⟨ 0 , ⟨ 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) ) ‘ ( ♯ ‘ 𝑝 ) )
38 18 37 wceq 𝑥 = ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { ⟨ 0 , ⟨ 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) ) ‘ ( ♯ ‘ 𝑝 ) )
39 17 38 wa ( 𝑓 Isom < , ( lt ‘ 𝑟 ) ( ( 1 ... ( ♯ ‘ 𝑝 ) ) , 𝑝 ) ∧ 𝑥 = ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { ⟨ 0 , ⟨ 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) ) ‘ ( ♯ ‘ 𝑝 ) ) )
40 39 5 wex 𝑓 ( 𝑓 Isom < , ( lt ‘ 𝑟 ) ( ( 1 ... ( ♯ ‘ 𝑝 ) ) , 𝑝 ) ∧ 𝑥 = ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { ⟨ 0 , ⟨ 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) ) ‘ ( ♯ ‘ 𝑝 ) ) )
41 40 4 cio ( ℩ 𝑥𝑓 ( 𝑓 Isom < , ( lt ‘ 𝑟 ) ( ( 1 ... ( ♯ ‘ 𝑝 ) ) , 𝑝 ) ∧ 𝑥 = ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { ⟨ 0 , ⟨ 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) ) ‘ ( ♯ ‘ 𝑝 ) ) ) )
42 1 3 2 2 41 cmpo ( 𝑟 ∈ V , 𝑝 ∈ V ↦ ( ℩ 𝑥𝑓 ( 𝑓 Isom < , ( lt ‘ 𝑟 ) ( ( 1 ... ( ♯ ‘ 𝑝 ) ) , 𝑝 ) ∧ 𝑥 = ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { ⟨ 0 , ⟨ 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) ) ‘ ( ♯ ‘ 𝑝 ) ) ) ) )
43 0 42 wceq splitFld = ( 𝑟 ∈ V , 𝑝 ∈ V ↦ ( ℩ 𝑥𝑓 ( 𝑓 Isom < , ( lt ‘ 𝑟 ) ( ( 1 ... ( ♯ ‘ 𝑝 ) ) , 𝑝 ) ∧ 𝑥 = ( seq 0 ( ( 𝑒 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑟 splitFld1 𝑒 ) ‘ 𝑔 ) ) , ( 𝑓 ∪ { ⟨ 0 , ⟨ 𝑟 , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) ) ‘ ( ♯ ‘ 𝑝 ) ) ) ) )