Step |
Hyp |
Ref |
Expression |
0 |
|
cpsl |
⊢ polySplitLim |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cvv |
⊢ V |
3 |
|
vp |
⊢ 𝑝 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑟 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑟 ) |
8 |
|
cfn |
⊢ Fin |
9 |
7 8
|
cin |
⊢ ( 𝒫 ( Base ‘ 𝑟 ) ∩ Fin ) |
10 |
|
cmap |
⊢ ↑m |
11 |
|
cn |
⊢ ℕ |
12 |
9 11 10
|
co |
⊢ ( ( 𝒫 ( Base ‘ 𝑟 ) ∩ Fin ) ↑m ℕ ) |
13 |
|
c1st |
⊢ 1st |
14 |
|
cc0 |
⊢ 0 |
15 |
|
vg |
⊢ 𝑔 |
16 |
|
vq |
⊢ 𝑞 |
17 |
15
|
cv |
⊢ 𝑔 |
18 |
17 13
|
cfv |
⊢ ( 1st ‘ 𝑔 ) |
19 |
|
ve |
⊢ 𝑒 |
20 |
19
|
cv |
⊢ 𝑒 |
21 |
20 13
|
cfv |
⊢ ( 1st ‘ 𝑒 ) |
22 |
|
vs |
⊢ 𝑠 |
23 |
22
|
cv |
⊢ 𝑠 |
24 |
|
csf |
⊢ splitFld |
25 |
|
vx |
⊢ 𝑥 |
26 |
16
|
cv |
⊢ 𝑞 |
27 |
25
|
cv |
⊢ 𝑥 |
28 |
|
c2nd |
⊢ 2nd |
29 |
17 28
|
cfv |
⊢ ( 2nd ‘ 𝑔 ) |
30 |
27 29
|
ccom |
⊢ ( 𝑥 ∘ ( 2nd ‘ 𝑔 ) ) |
31 |
25 26 30
|
cmpt |
⊢ ( 𝑥 ∈ 𝑞 ↦ ( 𝑥 ∘ ( 2nd ‘ 𝑔 ) ) ) |
32 |
31
|
crn |
⊢ ran ( 𝑥 ∈ 𝑞 ↦ ( 𝑥 ∘ ( 2nd ‘ 𝑔 ) ) ) |
33 |
23 32 24
|
co |
⊢ ( 𝑠 splitFld ran ( 𝑥 ∈ 𝑞 ↦ ( 𝑥 ∘ ( 2nd ‘ 𝑔 ) ) ) ) |
34 |
|
vf |
⊢ 𝑓 |
35 |
34
|
cv |
⊢ 𝑓 |
36 |
35 28
|
cfv |
⊢ ( 2nd ‘ 𝑓 ) |
37 |
29 36
|
ccom |
⊢ ( ( 2nd ‘ 𝑔 ) ∘ ( 2nd ‘ 𝑓 ) ) |
38 |
35 37
|
cop |
⊢ 〈 𝑓 , ( ( 2nd ‘ 𝑔 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 |
39 |
34 33 38
|
csb |
⊢ ⦋ ( 𝑠 splitFld ran ( 𝑥 ∈ 𝑞 ↦ ( 𝑥 ∘ ( 2nd ‘ 𝑔 ) ) ) ) / 𝑓 ⦌ 〈 𝑓 , ( ( 2nd ‘ 𝑔 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 |
40 |
22 21 39
|
csb |
⊢ ⦋ ( 1st ‘ 𝑒 ) / 𝑠 ⦌ ⦋ ( 𝑠 splitFld ran ( 𝑥 ∈ 𝑞 ↦ ( 𝑥 ∘ ( 2nd ‘ 𝑔 ) ) ) ) / 𝑓 ⦌ 〈 𝑓 , ( ( 2nd ‘ 𝑔 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 |
41 |
19 18 40
|
csb |
⊢ ⦋ ( 1st ‘ 𝑔 ) / 𝑒 ⦌ ⦋ ( 1st ‘ 𝑒 ) / 𝑠 ⦌ ⦋ ( 𝑠 splitFld ran ( 𝑥 ∈ 𝑞 ↦ ( 𝑥 ∘ ( 2nd ‘ 𝑔 ) ) ) ) / 𝑓 ⦌ 〈 𝑓 , ( ( 2nd ‘ 𝑔 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 |
42 |
15 16 2 2 41
|
cmpo |
⊢ ( 𝑔 ∈ V , 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑔 ) / 𝑒 ⦌ ⦋ ( 1st ‘ 𝑒 ) / 𝑠 ⦌ ⦋ ( 𝑠 splitFld ran ( 𝑥 ∈ 𝑞 ↦ ( 𝑥 ∘ ( 2nd ‘ 𝑔 ) ) ) ) / 𝑓 ⦌ 〈 𝑓 , ( ( 2nd ‘ 𝑔 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) |
43 |
3
|
cv |
⊢ 𝑝 |
44 |
|
c0 |
⊢ ∅ |
45 |
5 44
|
cop |
⊢ 〈 𝑟 , ∅ 〉 |
46 |
|
cid |
⊢ I |
47 |
46 6
|
cres |
⊢ ( I ↾ ( Base ‘ 𝑟 ) ) |
48 |
45 47
|
cop |
⊢ 〈 〈 𝑟 , ∅ 〉 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 |
49 |
14 48
|
cop |
⊢ 〈 0 , 〈 〈 𝑟 , ∅ 〉 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 |
50 |
49
|
csn |
⊢ { 〈 0 , 〈 〈 𝑟 , ∅ 〉 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } |
51 |
43 50
|
cun |
⊢ ( 𝑝 ∪ { 〈 0 , 〈 〈 𝑟 , ∅ 〉 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) |
52 |
42 51 14
|
cseq |
⊢ seq 0 ( ( 𝑔 ∈ V , 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑔 ) / 𝑒 ⦌ ⦋ ( 1st ‘ 𝑒 ) / 𝑠 ⦌ ⦋ ( 𝑠 splitFld ran ( 𝑥 ∈ 𝑞 ↦ ( 𝑥 ∘ ( 2nd ‘ 𝑔 ) ) ) ) / 𝑓 ⦌ 〈 𝑓 , ( ( 2nd ‘ 𝑔 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) , ( 𝑝 ∪ { 〈 0 , 〈 〈 𝑟 , ∅ 〉 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) ) |
53 |
13 52
|
ccom |
⊢ ( 1st ∘ seq 0 ( ( 𝑔 ∈ V , 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑔 ) / 𝑒 ⦌ ⦋ ( 1st ‘ 𝑒 ) / 𝑠 ⦌ ⦋ ( 𝑠 splitFld ran ( 𝑥 ∈ 𝑞 ↦ ( 𝑥 ∘ ( 2nd ‘ 𝑔 ) ) ) ) / 𝑓 ⦌ 〈 𝑓 , ( ( 2nd ‘ 𝑔 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) , ( 𝑝 ∪ { 〈 0 , 〈 〈 𝑟 , ∅ 〉 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) ) ) |
54 |
|
cshi |
⊢ shift |
55 |
|
c1 |
⊢ 1 |
56 |
35 55 54
|
co |
⊢ ( 𝑓 shift 1 ) |
57 |
13 56
|
ccom |
⊢ ( 1st ∘ ( 𝑓 shift 1 ) ) |
58 |
|
chlim |
⊢ HomLim |
59 |
28 35
|
ccom |
⊢ ( 2nd ∘ 𝑓 ) |
60 |
57 59 58
|
co |
⊢ ( ( 1st ∘ ( 𝑓 shift 1 ) ) HomLim ( 2nd ∘ 𝑓 ) ) |
61 |
34 53 60
|
csb |
⊢ ⦋ ( 1st ∘ seq 0 ( ( 𝑔 ∈ V , 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑔 ) / 𝑒 ⦌ ⦋ ( 1st ‘ 𝑒 ) / 𝑠 ⦌ ⦋ ( 𝑠 splitFld ran ( 𝑥 ∈ 𝑞 ↦ ( 𝑥 ∘ ( 2nd ‘ 𝑔 ) ) ) ) / 𝑓 ⦌ 〈 𝑓 , ( ( 2nd ‘ 𝑔 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) , ( 𝑝 ∪ { 〈 0 , 〈 〈 𝑟 , ∅ 〉 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) ) ) / 𝑓 ⦌ ( ( 1st ∘ ( 𝑓 shift 1 ) ) HomLim ( 2nd ∘ 𝑓 ) ) |
62 |
1 3 2 12 61
|
cmpo |
⊢ ( 𝑟 ∈ V , 𝑝 ∈ ( ( 𝒫 ( Base ‘ 𝑟 ) ∩ Fin ) ↑m ℕ ) ↦ ⦋ ( 1st ∘ seq 0 ( ( 𝑔 ∈ V , 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑔 ) / 𝑒 ⦌ ⦋ ( 1st ‘ 𝑒 ) / 𝑠 ⦌ ⦋ ( 𝑠 splitFld ran ( 𝑥 ∈ 𝑞 ↦ ( 𝑥 ∘ ( 2nd ‘ 𝑔 ) ) ) ) / 𝑓 ⦌ 〈 𝑓 , ( ( 2nd ‘ 𝑔 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) , ( 𝑝 ∪ { 〈 0 , 〈 〈 𝑟 , ∅ 〉 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) ) ) / 𝑓 ⦌ ( ( 1st ∘ ( 𝑓 shift 1 ) ) HomLim ( 2nd ∘ 𝑓 ) ) ) |
63 |
0 62
|
wceq |
⊢ polySplitLim = ( 𝑟 ∈ V , 𝑝 ∈ ( ( 𝒫 ( Base ‘ 𝑟 ) ∩ Fin ) ↑m ℕ ) ↦ ⦋ ( 1st ∘ seq 0 ( ( 𝑔 ∈ V , 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑔 ) / 𝑒 ⦌ ⦋ ( 1st ‘ 𝑒 ) / 𝑠 ⦌ ⦋ ( 𝑠 splitFld ran ( 𝑥 ∈ 𝑞 ↦ ( 𝑥 ∘ ( 2nd ‘ 𝑔 ) ) ) ) / 𝑓 ⦌ 〈 𝑓 , ( ( 2nd ‘ 𝑔 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) , ( 𝑝 ∪ { 〈 0 , 〈 〈 𝑟 , ∅ 〉 , ( I ↾ ( Base ‘ 𝑟 ) ) 〉 〉 } ) ) ) / 𝑓 ⦌ ( ( 1st ∘ ( 𝑓 shift 1 ) ) HomLim ( 2nd ∘ 𝑓 ) ) ) |