Metamath Proof Explorer


Definition df-psl

Description: Define the direct limit of an increasing sequence of fields produced by pasting together the splitting fields for each sequence of polynomials. That is, given a ring r , a strict order on r , and a sequence p : NN --> ( ~P r i^i Fin ) of finite sets of polynomials to split, we construct the direct limit system of field extensions by splitting one set at a time and passing the resulting construction to HomLim . (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-psl polySplitLim = ( 𝑟 ∈ V , 𝑝 ∈ ( ( 𝒫 ( Base ‘ 𝑟 ) ∩ Fin ) ↑m ℕ ) ↦ ( 1st ∘ seq 0 ( ( 𝑔 ∈ V , 𝑞 ∈ V ↦ ( 1st𝑔 ) / 𝑒 ( 1st𝑒 ) / 𝑠 ( 𝑠 splitFld ran ( 𝑥𝑞 ↦ ( 𝑥 ∘ ( 2nd𝑔 ) ) ) ) / 𝑓 𝑓 , ( ( 2nd𝑔 ) ∘ ( 2nd𝑓 ) ) ⟩ ) , ( 𝑝 ∪ { ⟨ 0 , ⟨ ⟨ 𝑟 , ∅ ⟩ , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) ) ) / 𝑓 ( ( 1st ∘ ( 𝑓 shift 1 ) ) HomLim ( 2nd𝑓 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpsl polySplitLim
1 vr 𝑟
2 cvv V
3 vp 𝑝
4 cbs Base
5 1 cv 𝑟
6 5 4 cfv ( Base ‘ 𝑟 )
7 6 cpw 𝒫 ( Base ‘ 𝑟 )
8 cfn Fin
9 7 8 cin ( 𝒫 ( Base ‘ 𝑟 ) ∩ Fin )
10 cmap m
11 cn
12 9 11 10 co ( ( 𝒫 ( Base ‘ 𝑟 ) ∩ Fin ) ↑m ℕ )
13 c1st 1st
14 cc0 0
15 vg 𝑔
16 vq 𝑞
17 15 cv 𝑔
18 17 13 cfv ( 1st𝑔 )
19 ve 𝑒
20 19 cv 𝑒
21 20 13 cfv ( 1st𝑒 )
22 vs 𝑠
23 22 cv 𝑠
24 csf splitFld
25 vx 𝑥
26 16 cv 𝑞
27 25 cv 𝑥
28 c2nd 2nd
29 17 28 cfv ( 2nd𝑔 )
30 27 29 ccom ( 𝑥 ∘ ( 2nd𝑔 ) )
31 25 26 30 cmpt ( 𝑥𝑞 ↦ ( 𝑥 ∘ ( 2nd𝑔 ) ) )
32 31 crn ran ( 𝑥𝑞 ↦ ( 𝑥 ∘ ( 2nd𝑔 ) ) )
33 23 32 24 co ( 𝑠 splitFld ran ( 𝑥𝑞 ↦ ( 𝑥 ∘ ( 2nd𝑔 ) ) ) )
34 vf 𝑓
35 34 cv 𝑓
36 35 28 cfv ( 2nd𝑓 )
37 29 36 ccom ( ( 2nd𝑔 ) ∘ ( 2nd𝑓 ) )
38 35 37 cop 𝑓 , ( ( 2nd𝑔 ) ∘ ( 2nd𝑓 ) ) ⟩
39 34 33 38 csb ( 𝑠 splitFld ran ( 𝑥𝑞 ↦ ( 𝑥 ∘ ( 2nd𝑔 ) ) ) ) / 𝑓 𝑓 , ( ( 2nd𝑔 ) ∘ ( 2nd𝑓 ) ) ⟩
40 22 21 39 csb ( 1st𝑒 ) / 𝑠 ( 𝑠 splitFld ran ( 𝑥𝑞 ↦ ( 𝑥 ∘ ( 2nd𝑔 ) ) ) ) / 𝑓 𝑓 , ( ( 2nd𝑔 ) ∘ ( 2nd𝑓 ) ) ⟩
41 19 18 40 csb ( 1st𝑔 ) / 𝑒 ( 1st𝑒 ) / 𝑠 ( 𝑠 splitFld ran ( 𝑥𝑞 ↦ ( 𝑥 ∘ ( 2nd𝑔 ) ) ) ) / 𝑓 𝑓 , ( ( 2nd𝑔 ) ∘ ( 2nd𝑓 ) ) ⟩
42 15 16 2 2 41 cmpo ( 𝑔 ∈ V , 𝑞 ∈ V ↦ ( 1st𝑔 ) / 𝑒 ( 1st𝑒 ) / 𝑠 ( 𝑠 splitFld ran ( 𝑥𝑞 ↦ ( 𝑥 ∘ ( 2nd𝑔 ) ) ) ) / 𝑓 𝑓 , ( ( 2nd𝑔 ) ∘ ( 2nd𝑓 ) ) ⟩ )
43 3 cv 𝑝
44 c0
45 5 44 cop 𝑟 , ∅ ⟩
46 cid I
47 46 6 cres ( I ↾ ( Base ‘ 𝑟 ) )
48 45 47 cop ⟨ ⟨ 𝑟 , ∅ ⟩ , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩
49 14 48 cop ⟨ 0 , ⟨ ⟨ 𝑟 , ∅ ⟩ , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩
50 49 csn { ⟨ 0 , ⟨ ⟨ 𝑟 , ∅ ⟩ , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ }
51 43 50 cun ( 𝑝 ∪ { ⟨ 0 , ⟨ ⟨ 𝑟 , ∅ ⟩ , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } )
52 42 51 14 cseq seq 0 ( ( 𝑔 ∈ V , 𝑞 ∈ V ↦ ( 1st𝑔 ) / 𝑒 ( 1st𝑒 ) / 𝑠 ( 𝑠 splitFld ran ( 𝑥𝑞 ↦ ( 𝑥 ∘ ( 2nd𝑔 ) ) ) ) / 𝑓 𝑓 , ( ( 2nd𝑔 ) ∘ ( 2nd𝑓 ) ) ⟩ ) , ( 𝑝 ∪ { ⟨ 0 , ⟨ ⟨ 𝑟 , ∅ ⟩ , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) )
53 13 52 ccom ( 1st ∘ seq 0 ( ( 𝑔 ∈ V , 𝑞 ∈ V ↦ ( 1st𝑔 ) / 𝑒 ( 1st𝑒 ) / 𝑠 ( 𝑠 splitFld ran ( 𝑥𝑞 ↦ ( 𝑥 ∘ ( 2nd𝑔 ) ) ) ) / 𝑓 𝑓 , ( ( 2nd𝑔 ) ∘ ( 2nd𝑓 ) ) ⟩ ) , ( 𝑝 ∪ { ⟨ 0 , ⟨ ⟨ 𝑟 , ∅ ⟩ , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) ) )
54 cshi shift
55 c1 1
56 35 55 54 co ( 𝑓 shift 1 )
57 13 56 ccom ( 1st ∘ ( 𝑓 shift 1 ) )
58 chlim HomLim
59 28 35 ccom ( 2nd𝑓 )
60 57 59 58 co ( ( 1st ∘ ( 𝑓 shift 1 ) ) HomLim ( 2nd𝑓 ) )
61 34 53 60 csb ( 1st ∘ seq 0 ( ( 𝑔 ∈ V , 𝑞 ∈ V ↦ ( 1st𝑔 ) / 𝑒 ( 1st𝑒 ) / 𝑠 ( 𝑠 splitFld ran ( 𝑥𝑞 ↦ ( 𝑥 ∘ ( 2nd𝑔 ) ) ) ) / 𝑓 𝑓 , ( ( 2nd𝑔 ) ∘ ( 2nd𝑓 ) ) ⟩ ) , ( 𝑝 ∪ { ⟨ 0 , ⟨ ⟨ 𝑟 , ∅ ⟩ , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) ) ) / 𝑓 ( ( 1st ∘ ( 𝑓 shift 1 ) ) HomLim ( 2nd𝑓 ) )
62 1 3 2 12 61 cmpo ( 𝑟 ∈ V , 𝑝 ∈ ( ( 𝒫 ( Base ‘ 𝑟 ) ∩ Fin ) ↑m ℕ ) ↦ ( 1st ∘ seq 0 ( ( 𝑔 ∈ V , 𝑞 ∈ V ↦ ( 1st𝑔 ) / 𝑒 ( 1st𝑒 ) / 𝑠 ( 𝑠 splitFld ran ( 𝑥𝑞 ↦ ( 𝑥 ∘ ( 2nd𝑔 ) ) ) ) / 𝑓 𝑓 , ( ( 2nd𝑔 ) ∘ ( 2nd𝑓 ) ) ⟩ ) , ( 𝑝 ∪ { ⟨ 0 , ⟨ ⟨ 𝑟 , ∅ ⟩ , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) ) ) / 𝑓 ( ( 1st ∘ ( 𝑓 shift 1 ) ) HomLim ( 2nd𝑓 ) ) )
63 0 62 wceq polySplitLim = ( 𝑟 ∈ V , 𝑝 ∈ ( ( 𝒫 ( Base ‘ 𝑟 ) ∩ Fin ) ↑m ℕ ) ↦ ( 1st ∘ seq 0 ( ( 𝑔 ∈ V , 𝑞 ∈ V ↦ ( 1st𝑔 ) / 𝑒 ( 1st𝑒 ) / 𝑠 ( 𝑠 splitFld ran ( 𝑥𝑞 ↦ ( 𝑥 ∘ ( 2nd𝑔 ) ) ) ) / 𝑓 𝑓 , ( ( 2nd𝑔 ) ∘ ( 2nd𝑓 ) ) ⟩ ) , ( 𝑝 ∪ { ⟨ 0 , ⟨ ⟨ 𝑟 , ∅ ⟩ , ( I ↾ ( Base ‘ 𝑟 ) ) ⟩ ⟩ } ) ) ) / 𝑓 ( ( 1st ∘ ( 𝑓 shift 1 ) ) HomLim ( 2nd𝑓 ) ) )