Metamath Proof Explorer


Definition df-psl

Description: Define the direct limit of an increasing sequence of fields produced by pasting together the splitting fields for each sequence of polynomials. That is, given a ring r , a strict order on r , and a sequence p : NN --> ( ~P r i^i Fin ) of finite sets of polynomials to split, we construct the direct limit system of field extensions by splitting one set at a time and passing the resulting construction to HomLim . (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-psl polySplitLim = r V , p 𝒫 Base r Fin 1 st seq 0 g V , q V 1 st g / e 1 st e / s s splitFld ran x q x 2 nd g / f f 2 nd g 2 nd f p 0 r I Base r / f 1 st f shift 1 HomLim 2 nd f

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpsl class polySplitLim
1 vr setvar r
2 cvv class V
3 vp setvar p
4 cbs class Base
5 1 cv setvar r
6 5 4 cfv class Base r
7 6 cpw class 𝒫 Base r
8 cfn class Fin
9 7 8 cin class 𝒫 Base r Fin
10 cmap class 𝑚
11 cn class
12 9 11 10 co class 𝒫 Base r Fin
13 c1st class 1 st
14 cc0 class 0
15 vg setvar g
16 vq setvar q
17 15 cv setvar g
18 17 13 cfv class 1 st g
19 ve setvar e
20 19 cv setvar e
21 20 13 cfv class 1 st e
22 vs setvar s
23 22 cv setvar s
24 csf class splitFld
25 vx setvar x
26 16 cv setvar q
27 25 cv setvar x
28 c2nd class 2 nd
29 17 28 cfv class 2 nd g
30 27 29 ccom class x 2 nd g
31 25 26 30 cmpt class x q x 2 nd g
32 31 crn class ran x q x 2 nd g
33 23 32 24 co class s splitFld ran x q x 2 nd g
34 vf setvar f
35 34 cv setvar f
36 35 28 cfv class 2 nd f
37 29 36 ccom class 2 nd g 2 nd f
38 35 37 cop class f 2 nd g 2 nd f
39 34 33 38 csb class s splitFld ran x q x 2 nd g / f f 2 nd g 2 nd f
40 22 21 39 csb class 1 st e / s s splitFld ran x q x 2 nd g / f f 2 nd g 2 nd f
41 19 18 40 csb class 1 st g / e 1 st e / s s splitFld ran x q x 2 nd g / f f 2 nd g 2 nd f
42 15 16 2 2 41 cmpo class g V , q V 1 st g / e 1 st e / s s splitFld ran x q x 2 nd g / f f 2 nd g 2 nd f
43 3 cv setvar p
44 c0 class
45 5 44 cop class r
46 cid class I
47 46 6 cres class I Base r
48 45 47 cop class r I Base r
49 14 48 cop class 0 r I Base r
50 49 csn class 0 r I Base r
51 43 50 cun class p 0 r I Base r
52 42 51 14 cseq class seq 0 g V , q V 1 st g / e 1 st e / s s splitFld ran x q x 2 nd g / f f 2 nd g 2 nd f p 0 r I Base r
53 13 52 ccom class 1 st seq 0 g V , q V 1 st g / e 1 st e / s s splitFld ran x q x 2 nd g / f f 2 nd g 2 nd f p 0 r I Base r
54 cshi class shift
55 c1 class 1
56 35 55 54 co class f shift 1
57 13 56 ccom class 1 st f shift 1
58 chlim class HomLim
59 28 35 ccom class 2 nd f
60 57 59 58 co class 1 st f shift 1 HomLim 2 nd f
61 34 53 60 csb class 1 st seq 0 g V , q V 1 st g / e 1 st e / s s splitFld ran x q x 2 nd g / f f 2 nd g 2 nd f p 0 r I Base r / f 1 st f shift 1 HomLim 2 nd f
62 1 3 2 12 61 cmpo class r V , p 𝒫 Base r Fin 1 st seq 0 g V , q V 1 st g / e 1 st e / s s splitFld ran x q x 2 nd g / f f 2 nd g 2 nd f p 0 r I Base r / f 1 st f shift 1 HomLim 2 nd f
63 0 62 wceq wff polySplitLim = r V , p 𝒫 Base r Fin 1 st seq 0 g V , q V 1 st g / e 1 st e / s s splitFld ran x q x 2 nd g / f f 2 nd g 2 nd f p 0 r I Base r / f 1 st f shift 1 HomLim 2 nd f